• Hot Rolled Deformed Bar ou Reinforcement Bar 6mm-50mm System 1
  • Hot Rolled Deformed Bar ou Reinforcement Bar 6mm-50mm System 2
  • Hot Rolled Deformed Bar ou Reinforcement Bar 6mm-50mm System 3
Hot Rolled Deformed Bar ou Reinforcement Bar 6mm-50mm

Hot Rolled Deformed Bar ou Reinforcement Bar 6mm-50mm

Ref Price:
get latest price
Loading Port:
Tianjin
Payment Terms:
TT or LC
Min Order Qty:
25 m.t.
Supply Capability:
100000 m.t./month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Product Description:

OKorder is offering high quality Hot Rolled Steel I-Beams at great prices with worldwide shipping. Our supplier is a world-class manufacturer of steel, with our products utilized the world over. OKorder annually supplies products to European, North American and Asian markets. We provide quotations within 24 hours of receiving an inquiry and guarantee competitive prices.

 

Product Applications:

Deformed bar is widely used in buildings, bridges, roads and other engineering construction. Big to highways, railways, bridges, culverts, tunnels, public facilities such as flood control, dam, small to housing construction, beam, column, wall and the foundation of the plate, deformed bar is an integral structure material. With the development of world economy  and the vigorous development of infrastructure construction, real estate, the demand for deformed bar will be larger and larger 

Product Advantages:

OKorder's Steel I-Beams are durable, strong, and resist corrosion, exact size, regular package, chemical and  mechanical properties are stable.

 

Main Product Features:

·         Premium quality

·         Prompt delivery & seaworthy packing (30 days after receiving deposit)

·         Corrosion resistance

·         Can be recycled and reused

·         Mill test certification

·         Professional Service

·         Competitive pricing

 

Product Specifications:

Manufacture: Hot rolled

Grade: BS4449

Certificates: ISO, SGS, BV, CIQ

Diameter: 6mm,8mm,10mm,12mm,14mm,16mm,18mm,20mm,

22mm,25mm,28mm,32mm,36mm,40mm,50mm

Length: 6M, 9M,12M or as required

Packaging: Export packing, nude packing, bundled

 

Chemical Composition: (Please kindly find our chemistry of our material based on HRB500 as below for your information)

Grade

Technical data of the original chemical composition (%)

C

Mn

Si

S

P

V

HRB400

≤0.25

≤1.60

≤0.80

≤0.045

≤0.045

0.04-0.12

Physical capability

Yield Strength (N/cm²)

Tensile Strength (N/cm²)

Elongation (%)

≥400

≥570

≥14

Theoretical weight and section area of each diameter as below for your information:

Diameter(mm)

Section area (mm²)

Mass(kg/m)

Weight of 12m bar(kg)

6

28.27

0.222

2.664

8

50.27

0.395

4.74

10

78.54

0.617

7.404

12

113.1

0.888

10.656

14

153.9

1.21

14.52

16

201.1

1.58

18.96

18

254.5

2.00

24

20

314.2

2.47

29.64

22

380.1

2.98

35.76

25

490.9

3.85

46.2

28

615.8

4.83

57.96

32

804.2

6.31

75.72

36

1018

7.99

98.88

40

1257

9.87

118.44

50

1964

15.42

185.04

FAQ:

Q1: How soon can we receive the product after purchase?

A1: Within three days of placing an order, we will begin production. The specific shipping date is dependent upon international and government factors, but is typically 7 to 10 workdays.

Q2: What makes stainless steel stainless?

A2: Stainless steel must contain at least 10.5 % chromium. It is this element that reacts with the oxygen in the air to form a complex chrome-oxide surface layer that is invisible but strong enough to prevent further oxygen from "staining" (rusting) the surface. Higher levels of chromium and the addition of other alloying elements such as nickel and molybdenum enhance this surface layer and improve the corrosion resistance of the stainless material.

Q3: Can stainless steel rust?

A3: Stainless does not "rust" as you think of regular steel rusting with a red oxide on the surface that flakes off. If you see red rust it is probably due to some iron particles that have contaminated the surface of the stainless steel and it is these iron particles that are rusting. Look at the source of the rusting and see if you can remove it from the surface.

Hot Rolled Deformed Bar ou Reinforcement Bar 6mm-50mm

Hot Rolled Deformed Bar ou Reinforcement Bar 6mm-50mm

 

 

Q:What is the effect of steel rebars on the weight of a structure?
Steel rebars have a significant effect on the weight of a structure, as they add additional mass to the overall construction.
Q:Are steel rebars susceptible to fatigue failure?
Yes, steel rebars are susceptible to fatigue failure. Fatigue failure occurs when a material undergoes repeated cyclic loading, causing cracks to initiate and propagate, leading to eventual failure. Steel rebars, which are commonly used in construction to reinforce concrete structures, can experience fatigue failure if they are subjected to repeated loading and unloading cycles over an extended period. To prevent fatigue failure, proper design considerations, such as adequate reinforcement, avoidance of high stress concentrations, and regular maintenance, should be implemented.
Q:What are the advantages of using epoxy-coated stainless steel rebars?
Epoxy-coated stainless steel rebars offer several advantages compared to traditional steel rebars. Firstly, the epoxy coating provides excellent corrosion resistance, protecting the rebar from moisture and chemicals present in the surrounding environment. This ensures the longevity and durability of the structure, reducing maintenance and repair costs over time. Additionally, stainless steel rebars possess high strength and are resistant to fire, making them suitable for use in harsh and high-temperature conditions. The epoxy coating also enhances the bond between the rebar and the concrete, improving the overall structural integrity. Lastly, the use of stainless steel rebars reduces the risk of staining or rust bleeding, resulting in a more aesthetically pleasing end product.
Q:Can steel rebars be used in parking structures?
Yes, steel rebars are commonly used in parking structures for reinforcing concrete and enhancing the structural integrity of the building.
Q:How to distinguish the quality of thread steel?
The quality of threaded steel (rebar spot price) can be used to compare intuitive methods to identify, and today we teach you a few quick identification of shoddy steel small trick.1., inferior steel longitudinal reinforcement is often wavy, prone to fold. Folding is due to shoddy manufacturers in pursuit of high efficiency, the amount of pressure is too large, produce handle, a rolling produce folding, folding products after bending cracks, the strength of steel big drop.2. inferior steel appearance often pitted phenomenon. Ma is due to a defect of groove wear caused by irregular rugged steel surface. Due to the inferior steel manufacturers to pursue profits, often rolling groove rolling most standard.
Q:How do steel rebars affect the constructability of projects in environmentally sensitive areas?
Projects in environmentally sensitive areas can be influenced both positively and negatively by the use of steel rebars. On the positive side, steel rebars are widely utilized in construction due to their strength and durability. They enhance the safety and stability of buildings and infrastructure, which is crucial in areas prone to high wind or seismic activity. By enabling the construction of resilient foundations and reinforcements, steel rebars reduce the risk of environmental damage. Additionally, the sustainability of projects in environmentally sensitive areas can be enhanced through the use of steel rebars. These rebars are highly recyclable, reducing the need for new raw materials and minimizing the environmental impact of resource extraction and processing. Incorporating steel rebars into construction projects can effectively reduce the carbon footprint, aligning with environmental conservation goals. However, there are also negative implications associated with steel rebars in environmentally sensitive areas. The production of steel emits greenhouse gases, contributing to climate change, which can harm fragile ecosystems and vulnerable species. Furthermore, the extraction of iron ore for steel production can lead to habitat destruction and deforestation, further impacting the environment. The transportation of steel rebars to construction sites in environmentally sensitive areas can also present challenges. It often requires the use of heavy machinery and vehicles, which if not properly managed, can cause soil compaction and erosion. This disturbance can disrupt natural habitats and affect the water quality of nearby rivers and streams. In conclusion, while steel rebars offer numerous benefits to projects in environmentally sensitive areas, they also present environmental challenges. It is crucial for construction companies and project stakeholders to carefully consider the sourcing, production, and transportation of steel rebars. Exploring alternative construction materials and techniques with lesser impact on the environment, as well as adopting sustainable practices like recycling steel rebars and reducing carbon emissions, can improve the constructability of projects in environmentally sensitive areas while mitigating their potential negative effects on the environment.
Q:What is the weight of a standard steel rebar?
The weight of a standard steel rebar can vary depending on its length and diameter. On average, a 1-meter long steel rebar with a diameter of 12 millimeters weighs around 0.89 kilograms.
Q:What is the role of steel rebars in ensuring structural stability?
In various construction projects, steel rebars are essential for maintaining structural stability. These reinforced bars are primarily utilized to strengthen concrete structures, like buildings, bridges, and highways, by providing additional tensile strength. Concrete is a highly versatile material capable of effectively withstanding compressive forces. However, its resistance to tensile forces is limited. This is where steel rebars come into play. By reinforcing concrete with steel rebars, the resulting composite material can effectively resist both compressive and tensile forces, thereby enhancing its overall structural stability. Under loads such as the weight of the structure or external forces like wind or seismic activity, concrete experiences tensile stresses. Without reinforcement, these tensile stresses can lead to cracks and ultimately result in structural failure. Thanks to their high ductility and tensile strength, steel rebars can absorb and distribute these tensile forces throughout the structure. To ensure optimal reinforcement, the placement and arrangement of steel rebars are carefully designed. Typically, they are embedded within the concrete in a grid-like pattern, forming a reinforced concrete matrix. This matrix strengthens the structure and prevents cracks from propagating, thereby effectively increasing its load-bearing capacity and durability. Furthermore, steel rebars also play a crucial role in maintaining the structural integrity of concrete structures over time. They help combat the effects of shrinkage, expansion, and temperature fluctuations that can lead to cracking. By providing a strong and flexible reinforcement system, steel rebars minimize the risks of structural damage and ensure the long-term stability of the construction. In summary, the role of steel rebars in ensuring structural stability can be summarized as follows: increasing the tensile strength of concrete, preventing cracks and structural failure, enhancing load-bearing capacity, and promoting long-term durability. By reinforcing concrete structures with steel rebars, engineers can create resilient and safe constructions capable of withstanding various forces and maintaining their integrity for decades.
Q:Do steel rebars increase the overall weight of a structure?
Yes, steel rebars do increase the overall weight of a structure. Rebars are typically added to reinforce concrete structures, providing tensile strength to counteract the concrete's weakness in handling tension forces. Steel rebars are made of steel, which is a dense and heavy material. When incorporated into a structure, the weight of the rebars adds to the total weight of the construction. However, the additional weight is usually negligible compared to the overall weight of the structure, especially in large-scale projects. The benefits of using steel rebars in terms of structural integrity and durability far outweigh the minimal increase in weight they contribute.
Q:How are steel rebars classified based on their surface patterns?
Steel rebars are classified based on their surface patterns into two main categories: plain rebars and deformed rebars. Plain rebars have a smooth and plain surface without any surface patterns or deformations. They are primarily used in applications where the concrete needs to slide along the rebar, such as in bridges and highway pavements. Plain rebars provide a high level of bonding between the steel and concrete due to the smooth surface, ensuring good load transfer between the two materials. On the other hand, deformed rebars have surface patterns or deformations that enhance their bonding with concrete. These patterns can be in the form of ribs, indentations, or other irregularities. Deformed rebars provide better mechanical anchoring to the concrete, preventing slippage and improving the overall structural integrity of reinforced concrete structures. Deformed rebars are further classified based on the type and shape of their surface patterns. Some common types include: 1. Ribbed rebar: These rebars have continuous, evenly spaced ribs along their entire length. The ribs provide increased bonding strength with the concrete, ensuring the rebar stays in place even under heavy loads. 2. Indented rebar: These rebars have indentations or impressions along their length. The indentations increase the surface area of the rebar, enhancing the bond between the steel and concrete. 3. Twisted rebar: These rebars have a twisted pattern along their length. The twisted pattern provides additional mechanical interlocking between the rebar and concrete. The choice of rebar surface pattern depends on the specific requirements of the construction project. Factors such as the type of structure, load-bearing capacity, and local building regulations play a crucial role in determining the appropriate classification of steel rebars based on their surface patterns.

1. Manufacturer Overview

Location
Year Established
Annual Output Value
Main Markets
Company Certifications

2. Manufacturer Certificates

a) Certification Name  
Range  
Reference  
Validity Period  

3. Manufacturer Capability

a)Trade Capacity  
Nearest Port
Export Percentage
No.of Employees in Trade Department
Language Spoken:
b)Factory Information  
Factory Size:
No. of Production Lines
Contract Manufacturing
Product Price Range

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

Hot products


Hot Searches

Related keywords