• Hot Rolled Carbon Steel Deformed Bar 32mm with High Quality System 1
  • Hot Rolled Carbon Steel Deformed Bar 32mm with High Quality System 2
  • Hot Rolled Carbon Steel Deformed Bar 32mm with High Quality System 3
Hot Rolled Carbon Steel Deformed Bar 32mm with High Quality

Hot Rolled Carbon Steel Deformed Bar 32mm with High Quality

Ref Price:
get latest price
Loading Port:
China Main Port
Payment Terms:
TT or LC
Min Order Qty:
25 m.t.
Supply Capability:
20000 m.t./month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Product Description:

OKorder is offering Hot Rolled Carbon Steel Deformed Bar 32mm with High Quality at great prices with worldwide shipping. Our supplier is a world-class manufacturer of steel, with our products utilized the world over. OKorder annually supplies products to European, North American and Asian markets. We provide quotations within 24 hours of receiving an inquiry and guarantee competitive prices.

 

Product Applications:

Hot Rolled Carbon Steel Deformed Bar 32mm with High Quality is widely used in buildings, bridges, roads and other engineering construction. Big to highways, railways, bridges, culverts, tunnels, public facilities such as flood control, dam, small to housing construction, beam, column, wall and the foundation of the plate, deformed bar is an integral structure material. With the development of world economy  and the vigorous development of infrastructure construction, real estate, the demand for deformed bar will be larger and larger..

 

Product Advantages:

OKorder's Hot Rolled Carbon Steel Deformed Bar 32mm with High Quality are durable, strong.packed and suitable for construction

 

Main Product Features:

·         Premium quality

·         Prompt delivery & seaworthy packing (30 days after receiving deposit)

·         Can be recycled and reused

·         Mill test certification

·         Professional Service

·         Competitive pricing

 

Product Specifications:

Manufacture: Hot rolled

Grade: HRB335 HRB400 BS4449 Grade460 ASTM Grade40 Grade60

Certificates: ISO, SGS, BV, CIQ

Length:6m 8m 9m 12m

Packaging: Export packing, packed by coil

 

FAQ:

Q1: Why buy Materials & Equipment from OKorder.com?

A1: All products offered byOKorder.com are carefully selected from China's most reliable manufacturing enterprises. Through its ISO certifications, OKorder.com adheres to the highest standards and a commitment to supply chain safety and customer satisfaction.

Q2: How do we guarantee the quality of our products?

A2: We have established an advanced quality management system which conducts strict quality tests at every step, from raw materials to the final product. At the same time, we provide extensive follow-up service assurances as required.

Q3: How soon can we receive the product after purchase?

A3: Within three days of placing an order, we will begin production. The specific shipping date is dependent upon international and government factors, but is typically 7 to 10 workdays.

Q4: How many tons per bundle?

A4: Around 2-3tons

Q5: How to avoid the rust after deliver the goods to the loading port?

A5: We will keep the goods at the port covered with water-proof material

Q6: What is the chemical composition and physical properties of HRB400?

A6:

Grade

Technical data of the original chemical composition (%)

C

Mn

Si

S

P

V

HRB400

≤0.25

≤1.60

≤0.80

≤0.045

≤0.045

0.04-0.12

Physical capability

Yield Strength (N/cm²)

Tensile Strength (N/cm²)

Elongation (%)

≥400

≥570

≥14

 Q7:What is chemical composition and physical properties of 500B?

A7:

BS4449 500B

Chemical  Composition(%)

C

Mn

Si

S

P

≤0.24

≤0.45

≤0.16

≤0.05

≤0.31

Physical capability

Yield Strength(N/cm²)

Tensile Strength(N/cm²)

Elongation (%)

≥650

≥500

19

Q8: What is the chemical composition and physical properties of HRB335?

A8:

HRB335

Chemical  Composition(%)

C

Mn

Si

S

P

≤0.25

≤1.60

≤0.80

≤0.045

≤0.045

Physical capability

Yield Strength(N/cm²)

Tensile Strength(N/cm²)

Elongation (%)

≥335

≥490

≥16

 

Images:

Q:What is the impact of steel rebars on the aesthetics of a structure?
Steel rebars, being an essential component of reinforced concrete structures, generally have minimal impact on the aesthetics of a building. They are typically concealed within the structure and remain hidden from view. However, in certain architectural designs where rebars are intentionally exposed, they can contribute to an industrial or modern aesthetic. Overall, the impact of steel rebars on the aesthetics of a structure is largely dependent on the design intent and whether they are meant to be visible or not.
Q:What is the effect of steel rebars on the electrical conductivity of concrete?
Concrete's electrical conductivity is significantly influenced by steel rebars. The inclusion of steel rebars in concrete enhances its overall electrical conductivity as steel is an excellent conductor. This is because steel rebars create a network of conductive paths within the concrete, facilitating the smooth flow of electrical current. Considering the electrical conductivity of concrete is crucial, particularly in situations that necessitate electrical grounding or conductivity. Steel rebars play a vital role in establishing a low-resistance pathway for electrical current, enhancing the overall electrical conductivity of the concrete structure. Nevertheless, it is important to acknowledge that the presence of steel rebars can pose challenges in certain scenarios. For instance, in electrical installations requiring insulation or areas where electrical isolation is essential, the conductivity provided by steel rebars may not be desired. In such cases, additional measures such as insulation or isolation techniques must be employed to prevent undesired electrical currents from traversing through the concrete. In conclusion, the impact of steel rebars on the electrical conductivity of concrete is contingent upon the specific requirements and applications of the concrete structure. A thorough understanding of the intended use and the implementation of appropriate measures will ensure that the electrical conductivity of the concrete meets the desired specifications.
Q:What is the maximum allowable spacing between steel rebars in columns?
The maximum allowable spacing between steel rebars in columns typically depends on various factors such as the size and type of the rebar, the design requirements, and the local building codes. It is crucial to consult with a structural engineer or refer to the specific building codes and design standards applicable to ensure the appropriate spacing is maintained for structural integrity and safety.
Q:What are the advantages of using galvanized steel rebars?
There are several advantages to using galvanized steel rebars. Firstly, galvanized steel rebars have a protective zinc coating that helps prevent corrosion, extending the lifespan of the rebars and increasing the durability of the overall structure. This makes them ideal for construction projects in areas with high humidity, coastal regions, or where the structure will be exposed to chemicals or other corrosive elements. Additionally, galvanized steel rebars have high tensile strength, meaning they can withstand heavy loads and provide excellent structural support. They are also cost-effective as they require less maintenance and replacement over time compared to other materials. Overall, the use of galvanized steel rebars offers improved longevity, strength, and cost-efficiency, making them a popular choice in construction projects.
Q:What is the effect of exposure to UV radiation on steel rebars?
Exposure to UV radiation can cause degradation and weakening of steel rebars. Over time, the radiation can lead to oxidation and corrosion, which can compromise the structural integrity of the rebars and increase the risk of failure in concrete structures.
Q:What is the relationship between the price and the hot coil steel prices?
Effect of hot rolled coil futures price factors are as follows: 1, the steel market supply and demand; 2, lower cost constraint price high or low; 3, the domestic market supply of funds decided to steel price level; the effect of 4, the domestic market competition on the market; 5, the market is expected to boost the role of price change up effect; 6, financial markets and commodity markets on steel prices.
Q:How do steel rebars affect the overall constructability of a project?
Steel rebars have a significant impact on the overall constructability of a project. These reinforcing bars, commonly known as rebars, play a crucial role in enhancing the strength, durability, and stability of concrete structures. They are instrumental in mitigating the tensile forces that concrete alone cannot withstand, thereby increasing the overall load-bearing capacity of the structure. Firstly, steel rebars simplify the construction process by providing a framework for pouring and shaping concrete. They act as a skeletal structure that holds the concrete in place during the curing process, ensuring that it sets properly and takes the desired shape. This contributes to the overall efficiency of construction projects, as it allows for faster concrete placement and reduces the risk of structural deformities. Moreover, rebars enhance the structural integrity of the project. By reinforcing the concrete, they improve its ability to resist cracking, bending, and breaking under various loads and environmental conditions. This increased strength and resilience make the structure more durable and reduce the need for frequent repairs or maintenance, ultimately saving time and costs in the long run. In addition to strength and durability, steel rebars also enhance the constructability of a project by enabling flexibility in design. With rebars, architects and engineers have the freedom to create complex and innovative structures, such as high-rise buildings, bridges, and tunnels, that require high load-bearing capacities. The versatility of rebars allows for the construction of structures with unique shapes, curves, and spans, expanding the possibilities of architectural design. Furthermore, steel rebars facilitate constructability by enabling the construction of large-scale projects. The use of rebars allows for the creation of reinforced concrete elements, such as columns, beams, and slabs, which can support heavy loads and distribute them evenly throughout the structure. This capability is particularly crucial for projects that require significant weight-bearing capacity, such as industrial buildings or infrastructure projects. Overall, steel rebars have a profound impact on the constructability of a project. They simplify the construction process, enhance structural integrity, enable flexibility in design, and facilitate the construction of large-scale projects. By incorporating rebars into concrete structures, construction professionals can ensure that their projects are stronger, more durable, and better equipped to withstand various loads and environmental conditions.
Q:Can steel rebars be used in offshore oil and gas platform construction?
Steel rebars are indeed suitable for use in the construction of offshore oil and gas platforms. They are frequently employed as reinforcements in concrete structures, including offshore platforms. This utilization enhances the concrete's strength and durability, thereby increasing its ability to withstand the challenging conditions present in offshore environments, such as powerful winds, waves, and corrosive saltwater. The incorporation of steel rebars into the construction of offshore platforms guarantees the platform's structural integrity, resulting in a secure and dependable structure for oil and gas extraction activities. Furthermore, steel rebars can be custom-designed and manufactured to conform to specific industry standards and requirements, ensuring their appropriateness for offshore applications.
Q:Two grade steel and three grade steel difference, the construction of the use of thread steel in general how to use the level?
The corresponding plasticity is a little worse. In the past, most of the rebar on the site was made of two grade steel. In the past few years, the country adjusted the standard brick, and gradually used three or even four steel. Two grade steel has been gradually withdrawn from the market, many large steel mills have not been produced
Q:How do steel rebars affect the overall workability of concrete?
Concrete's overall workability is significantly improved by steel rebars. Workability refers to how easily concrete can be mixed, placed, compacted, and finished to achieve the desired shape and surface. The incorporation of steel rebars into concrete provides reinforcement and enhances its structural strength. These rebars act as a skeleton within the concrete matrix and evenly distribute loads and stresses throughout the structure. This reinforcement prevents cracking, improves structural integrity, and increases the concrete's load-bearing capacity. Steel rebars also aid in controlling shrinkage and cracking in concrete. During the curing process, concrete tends to shrink, leading to crack formation. However, the presence of rebars counteracts the tensile forces causing shrinkage and cracking, thus enhancing the concrete's overall durability. In addition to their structural benefits, steel rebars also facilitate concrete workability during construction. They guide proper concrete placement and prevent mix segregation or separation. These rebars ensure proper compaction, eliminating potential voids or air pockets and resulting in a more uniform mixture. Furthermore, steel rebars provide stability and support to concrete during curing and hardening stages. They prevent deformation or sagging of fresh concrete, ensuring it maintains its desired shape and form. This is particularly crucial for complex or intricate structures requiring precise shaping and positioning. Overall, the inclusion of steel rebars positively impacts concrete workability by enhancing structural strength, mitigating shrinkage and cracking, facilitating proper placement and compaction, and providing stability during the curing process. The combination of concrete and steel rebars creates a durable and reliable construction material capable of withstanding various loads and environmental conditions.

1. Manufacturer Overview

Location
Year Established
Annual Output Value
Main Markets
Company Certifications

2. Manufacturer Certificates

a) Certification Name  
Range  
Reference  
Validity Period  

3. Manufacturer Capability

a)Trade Capacity  
Nearest Port
Export Percentage
No.of Employees in Trade Department
Language Spoken:
b)Factory Information  
Factory Size:
No. of Production Lines
Contract Manufacturing
Product Price Range

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

Hot products


Hot Searches

Related keywords