Hot Rolled Carbon Steel Deformed Bar 14mm with High Quality
- Loading Port:
- China Main Port
- Payment Terms:
- TT or LC
- Min Order Qty:
- 25 m.t.
- Supply Capability:
- 20000 m.t./month
OKorder Service Pledge
OKorder Financial Service
You Might Also Like
Product Description:
OKorder is offering Hot Rolled Carbon Steel Deformed Bar 14mm with High Quality at great prices with worldwide shipping. Our supplier is a world-class manufacturer of steel, with our products utilized the world over. OKorder annually supplies products to European, North American and Asian markets. We provide quotations within 24 hours of receiving an inquiry and guarantee competitive prices.
Product Applications:
Hot Rolled Carbon Steel Deformed Bar 14mm with High Quality is widely used in buildings, bridges, roads and other engineering construction. Big to highways, railways, bridges, culverts, tunnels, public facilities such as flood control, dam, small to housing construction, beam, column, wall and the foundation of the plate, deformed bar is an integral structure material. With the development of world economy and the vigorous development of infrastructure construction, real estate, the demand for deformed bar will be larger and larger..
Product Advantages:
OKorder's Hot Rolled Carbon Steel Deformed Bar 14mm with High Quality are durable, strong.packed and suitable for construction
Main Product Features:
· Premium quality
· Prompt delivery & seaworthy packing (30 days after receiving deposit)
· Can be recycled and reused
· Mill test certification
· Professional Service
· Competitive pricing
Product Specifications:
Manufacture: Hot rolled
Grade: HRB335 HRB400 BS4449 Grade460 ASTM Grade40 Grade60
Certificates: ISO, SGS, BV, CIQ
Length:6m 8m 9m 12m
Packaging: Export packing, packed by coil
FAQ:
Q1: Why buy Materials & Equipment from OKorder.com?
A1: All products offered byOKorder.com are carefully selected from China's most reliable manufacturing enterprises. Through its ISO certifications, OKorder.com adheres to the highest standards and a commitment to supply chain safety and customer satisfaction.
Q2: How do we guarantee the quality of our products?
A2: We have established an advanced quality management system which conducts strict quality tests at every step, from raw materials to the final product. At the same time, we provide extensive follow-up service assurances as required.
Q3: How soon can we receive the product after purchase?
A3: Within three days of placing an order, we will begin production. The specific shipping date is dependent upon international and government factors, but is typically 7 to 10 workdays.
Q4: How many tons per bundle?
A4: Around 2-3tons
Q5: How to avoid the rust after deliver the goods to the loading port?
A5: We will keep the goods at the port covered with water-proof material
Q6: What is the chemical composition and physical properties of HRB400?
A6
Grade | Technical data of the original chemical composition (%) | ||||||
C | Mn | Si | S | P | V | ||
HRB400 | ≤0.25 | ≤1.60 | ≤0.80 | ≤0.045 | ≤0.045 | 0.04-0.12 | |
Physical capability | |||||||
Yield Strength (N/cm²) | Tensile Strength (N/cm²) | Elongation (%) | |||||
≥400 | ≥570 | ≥14 | |||||
Q7:What is chemical composition and physical properties of 500B?
A7:
BS4449 500B | Chemical Composition | ||||
C | Mn | Si | S | P | |
0.24 | 0.45 | 0.16 | 0.05 | 0.31 | |
Physical capability | |||||
Yield Strength(N/cm²) | Tensile Strength(N/cm²) | Elongation (%) | |||
650 | ≥500 | 19 |
Images:
- Q: What are the factors that can cause steel rebars to corrode prematurely?
- There are several factors that can contribute to the premature corrosion of steel rebars. These include exposure to moisture, high levels of chloride ions, carbonation of concrete, inadequate concrete cover, poor quality of concrete or protective coatings, and the presence of other aggressive chemicals such as sulfates or acids. Environmental conditions, such as high humidity, coastal areas, or industrial environments, can also accelerate the corrosion process. Additionally, improper construction practices, such as inadequate compaction or curing of concrete, can lead to the initiation and progression of corrosion in steel rebars.
- Q: How do steel rebars help in preventing cracks in concrete?
- Steel rebars help in preventing cracks in concrete by providing reinforcement and increasing the tensile strength of the structure. When concrete is subjected to tensile forces, it tends to crack. However, the presence of steel rebars within the concrete helps distribute these forces, absorbing the tension and preventing cracks from forming or growing. The rebars act like a skeleton, enhancing the structural integrity and durability of the concrete, ensuring it can withstand various loads and external pressures without significant damage.
- Q: What are the considerations for using epoxy-coated steel rebars?
- When using epoxy-coated steel rebars, there are several considerations to keep in mind. Firstly, it is important to ensure that the coating is properly applied and has adhered well to the rebar surface to provide effective protection against corrosion. Secondly, the epoxy coating should be resistant to chemicals commonly found in the construction environment. Additionally, the handling and storage of epoxy-coated rebars should be done with care to avoid any damage to the coating. It is also crucial to follow the recommended installation practices to prevent any damage or delamination of the epoxy coating during the concrete pouring process. Lastly, periodic inspection and maintenance should be carried out to ensure the longevity of the epoxy-coated steel rebars and to address any potential damages or breaches in the coating.
- Q: How do steel rebars affect the seismic performance of a structure?
- Steel rebars significantly improve the seismic performance of a structure by enhancing its strength, ductility, and overall structural stability. Rebars help to distribute and dissipate seismic forces, reducing the risk of structural failure and collapse during an earthquake. By reinforcing concrete elements, rebars increase the structure's resistance to bending, tension, and shear forces, thereby improving its ability to withstand seismic ground motions and maintain its integrity.
- Q: What are the different types of steel rebars used in railway construction?
- There are primarily four types of steel rebars used in railway construction: plain carbon steel rebars, stainless steel rebars, epoxy-coated rebars, and galvanized rebars. Each type offers specific characteristics and benefits, such as corrosion resistance, durability, and strength, to ensure the longevity and stability of railway infrastructure.
- Q: Can steel rebars be welded to other steel components?
- Yes, steel rebars can be welded to other steel components. Welding is a common method used to join steel structures, including rebars, to create strong and durable connections.
- Q: What are the factors that determine the selection of steel rebars?
- There are several factors that determine the selection of steel rebars for construction projects. One of the most important factors is the required strength and durability of the structure. Different grades of steel rebars have different yield strengths, which indicate the maximum amount of stress the rebar can withstand before it begins to deform. The design of the structure and the load it will bear will determine the required strength of the rebars. Another factor is the corrosion resistance of the rebars. Steel rebars are susceptible to corrosion, especially when exposed to moisture and other environmental factors. In areas with high humidity or near coastal regions, corrosion-resistant rebars may be required to ensure the longevity and structural integrity of the project. The size and shape of the rebars also play a role in their selection. The diameter of the rebar is determined by the structural requirements and the concrete cover thickness. The shape of the rebar, whether it is plain, deformed, or ribbed, also affects its bonding with the surrounding concrete. The availability and cost of the rebars are important factors as well. Some grades or types of steel rebars may be more readily available in certain regions, while others may need to be imported. The cost of the rebars will also influence the selection, as different grades and types may have varying price points. Lastly, the specifications and requirements set by local building codes and regulations must be considered. These codes often dictate the minimum standards for strength, corrosion resistance, and other factors that must be met by the rebars used in construction. Overall, the factors that determine the selection of steel rebars include required strength, corrosion resistance, size and shape, availability and cost, and compliance with local building codes and regulations. By considering these factors, engineers and construction professionals can select the most suitable rebars for their projects to ensure safety, durability, and cost-effectiveness.
- Q: What are the common methods of cutting steel rebars on construction sites?
- The common methods of cutting steel rebars on construction sites include using a circular saw with an abrasive or diamond blade, a cutting torch with oxy-fuel or plasma, a hydraulic shear, or a rebar cutter.
- Q: Can steel rebars be recycled after demolition?
- Yes, steel rebars can be recycled after demolition. Steel is one of the most commonly recycled materials, and rebars are no exception. After demolition, steel rebars can be collected, sorted, and sent to recycling facilities where they are melted down and reused to make new steel products. This recycling process helps reduce waste and conserve resources.
- Q: Are there any standards for the spacing of steel rebars in concrete?
- Steel rebars in concrete have specific spacing standards in place to guarantee the durability and structural integrity of the reinforced concrete. These standards may vary depending on factors such as the type of structure, load conditions, and local building codes. In the United States, the American Concrete Institute (ACI) provides guidelines for rebar spacing in their publication ACI 318, known as "Building Code Requirements for Structural Concrete." According to ACI 318, the minimum spacing between parallel reinforcing bars should be equal to or greater than the maximum bar size or 1.5 times the diameter of the largest coarse aggregate used in the concrete, whichever is larger. For instance, if the maximum bar size is 12mm and the largest coarse aggregate size is 20mm, the minimum spacing between the rebars should be 30mm (1.5 times the largest aggregate size). This ensures sufficient concrete cover around each rebar, protecting it from corrosion and providing adequate bond strength. In addition to the minimum spacing, ACI 318 also offers guidelines for the maximum spacing of rebars. These guidelines take into account factors such as the size and shape of the concrete member, the type of loading it will experience, and the required strength. The maximum spacing is typically determined to prevent excessive cracking and ensure proper distribution of loads throughout the structure. It is important to note that local building codes and regulations may have additional requirements or deviations from the ACI standards. Therefore, it is always recommended to consult the relevant building codes or work with a qualified structural engineer to ensure compliance with the specific spacing requirements for steel rebars in concrete in your area.
Send your message to us
Hot Rolled Carbon Steel Deformed Bar 14mm with High Quality
- Loading Port:
- China Main Port
- Payment Terms:
- TT or LC
- Min Order Qty:
- 25 m.t.
- Supply Capability:
- 20000 m.t./month
OKorder Service Pledge
OKorder Financial Service
Similar products
Hot products
Hot Searches
Related keywords