• High Quality Hot Rolled Steel H Beam System 1
  • High Quality Hot Rolled Steel H Beam System 2
  • High Quality Hot Rolled Steel H Beam System 3
High Quality Hot Rolled Steel H Beam

High Quality Hot Rolled Steel H Beam

Ref Price:
get latest price
Loading Port:
China Main Port
Payment Terms:
TT or LC
Min Order Qty:
100MT m.t.
Supply Capability:
10000MT m.t./month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Specifications of Hot Rolled Steel H-beam

1. Standard: GB

2. Grade: Q235 or Equivalent

3. Length: 6m,10m, 12m as following table

4. Invoicing on theoretical weight or actual weight as customer request

5.Payment: TT or L/C

6. Sizes:

 

 

 Hot Rolled Steel H-beam  

 

 

Category

model

(height*width)/

(mm×mm)

Section size/mm

Cross-section area/cm2

Theoretical Weight/(kg/m)

Moment of inertia/cm4

radius/cm

Section modulus/cm3

H

B

t1

t2

r

Ix

Iy

ix

iy

Wx

Wy

HW

100×100

100

100

6

8

8

21.59

16.9

386

134

4.23

2.49

77.1

26.7

125×125

125

125

6.5

9

8

30.00

23.6

843

293

5.30

3.13

135

46.9

150×150

150

150

7

10

8

39.65

31.1

1620

563

6.39

3.77

216

75.1

175×175

175

175

7.5

11

13

51.43

40.4

2918

983

7.53

4.37

334

112

200×200

200

200

8

12

13

63.53

49.9

4717

1601

8.62

5.02

472

160

200

204

12

12

13

71.53

56.2

4984

1701

8.35

4.88

498

167

250×250

244

252

11

11

13

81.31

63.8

8573

2937

10.27

6.01

703

233

250

250

9

14

13

91.43

71.8

10689

3648

10.81

6.32

855

292

250

255

14

14

13

103.93

81.6

11340

3875

10.45

6.11

907

304

HM

150×100

148

100

6

9

8

26.35

20.7

995.3

150.3

6.15

2.39

134.5

30.1

200×150

194

150

6

9

8

38.11

29.9

2586

506.6

8.24

3.65

266.6

67.6

250×175

244

175

7

11

13

55.49

43.6

5908

983.5

10.32

4.21

484.3

112.4

HN

100×50

100

50

5

7

8

11.85

9.3

191.0

14.7

4.02

1.11

38.2

5.9

125×60

125

60

6

8

8

16.69

13.1

407.7

29.1

4.94

1.32

65.2

9.7

150×75

150

75

5

7

8

17.85

14.0

645.7

49.4

6.01

1.66

86.1

13.2

175×90

175

90

5

8

8

22.90

18.0

1174

97.4

7.16

2.06

134.2

21.6

200×100

198

99

4.5

7

8

22.69

17.8

1484

113.4

8.09

2.24

149.9

22.9

200

100

5.5

8

8

26.67

20.9

1753

133.7

8.11

2.24

175.3

26.7

250×125

248

124

5

8

8

31.99

25.1

3346

254.5

10.23

2.82

269.8

41.1

250

125

6

9

8

36.97

29.0

3868

293.5

10.23

2.82

309.4

47.0

300×150

298

149

5.5

8

13

40.80

32.0

5911

441.7

12.04

3.29

396.7

59.3

300

150

6.5

9

13

46.78

36.7

6829

507.2

12.08

3.29

455.3

67.6

350×175

346

174

6

9

13

52.45

41.2

10456

791.1

14.12

3.88

604.4

90.9

350

175

7

11

13

62.91

49.4

12980

983.8

14.36

3.95

741.7

112.4

400×150

400

150

8

13

13

70.37

55.2

17906

733.2

15.95

3.23

895.3

97.8

HT

100×50

95

48

3.2

4.5

8

7.62

6.0

109.7

8.4

3.79

1.05

23.1

3.5

97

49

4

5.5

8

9.38

7.4

141.8

10.9

3.89

1.08

29.2

4.4

100×100

96

99

4.5

6

8

16.21

12.7

272.7

97.1

4.10

2.45

56.8

19.6

125×60

118

58

3.2

4.5

8

9.26

7.3

202.4

14.7

4.68

1.26

34.3

5.1

120

59

4

5.5

8

11.40

8.9

259.7

18.9

4.77

1.29

43.3

6.4

125×125

119

123

4.5

6

8

20.12

15.8

523.6

186.2

5.10

3.04

88.0

30.3

150×75

145

73

3.2

4.5

8

11.47

9.0

383.2

29.3

5.78

1.60

52.9

8.0

147

74

4

5.5

8

14.13

11.1

488.0

37.3

5.88

1.62

66.4

10.1

150×100

139

97

4.5

4.5

8

13.44

10.5

447.3

68.5

5.77

2.26

64.4

14.1

142

99

4.5

6

8

18.28

14.3

632.7

97.2

5.88

2.31

89.1

19.6

150×150

144

148

5

7

8

27.77

21.8

1070

378.4

6.21

3.69

148.6

51.1

147

149

6

8.5

8

33.68

26.4

1338

468.9

6.30

3.73

182.1

62.9

175×90

168

88

3.2

4.5

8

13.56

10.6

619.6

51.2

6.76

1.94

73.8

11.6

171

89

4

6

8

17.59

13.8

852.1

70.6

6.96

2.00

99.7

15.9

175×175

167

173

5

7

13

33.32

26.2

1731

604.5

7.21

4.26

207.2

69.9

172

175

6.5

9.5

13

44.65

35.0

2466

849.2

7.43

4.36

286.8

97.1

200×100

193

98

3.2

4.5

8

15.26

12.0

921.0

70.7

7.77

2.15

95.4

14.4

196

99

4

6

8

19.79

15.5

1260

97.2

7.98

2.22

128.6

19.6

200×150

188

149

4.5

6

8

26.35

20.7

1669

331.0

7.96

3.54

177.6

44.4

  

Usage & Applications of Hot Rolled Steel H-beam

Commercial building structure ;Pre-engineered buildings; Machinery support structure; Prefabricated structure; Medium scale bridges; Ship-building structure. etc.

 

 

 

Packaging & Delivery of Hot Rolled Steel H-beam

1. Packing: it is nude packed in bundles by steel wire rod

2. Bundle weight: not more than 3.5MT for bulk vessel; less than 3 MT for container load

3. Marks:

Color marking: There will be color marking on both end of the bundle for the cargo delivered by bulk vessel. That makes it easily to distinguish at the destination port.

Tag mark: there will be tag mark tied up on the bundles. The information usually including supplier logo and name, product name, made in China, shipping marks and other information request by the customer.

If loading by container the marking is not needed, but we will prepare it as customer request.

4. Transportation: the goods are delivered by truck from mill to loading port, the maximum quantity can be loaded is around 40MTs by each truck. If the order quantity cannot reach the full truck loaded, the transportation cost per ton will be little higher than full load.

5. Delivered by container or bulk vessel

 

Production flow of Hot Rolled Steel H-beam

Material prepare (billet) —heat up—rough rolling—precision rolling—cooling—packing—storage and transportation

 

 

 

 

 

 

 

 

Q:How are steel H-beams protected against corrosion?
There are various methods to protect steel H-beams against corrosion. One commonly used approach is to apply a protective coating. This involves either painting the surface of the beam or applying an epoxy coating. By doing so, a barrier is created between the steel and the surrounding environment, effectively preventing moisture and oxygen from causing corrosion. Another method is galvanization, which involves coating the steel beams with a layer of zinc. This zinc coating offers excellent resistance against corrosion. It acts as a sacrificial layer, corroding instead of the steel when exposed to moisture or oxygen. This helps to extend the lifespan of the H-beams and maintain their structural integrity. Furthermore, stainless steel H-beams possess natural resistance to corrosion due to the presence of chromium. Stainless steel contains at least 10.5% chromium, which forms a protective oxide layer on the metal's surface. This oxide layer acts as a barrier, preventing the steel from coming into contact with corrosive elements in the environment. In conclusion, protecting steel H-beams from corrosion involves the use of protective coatings, galvanization, or utilizing stainless steel. These measures ensure the durability and longevity of the H-beams, particularly in environments where corrosion is a concern.
Q:Can steel H-beams be used in temporary structures?
Yes, steel H-beams can be used in temporary structures. Their strength, durability, and versatility make them suitable for various temporary applications, such as construction scaffolding, event stages, temporary bridges, and support structures.
Q:What are the different types of steel H-beam connections for structures with high seismic activity?
In structures with high seismic activity, it is crucial to ensure that the connections between steel H-beams are strong and capable of withstanding the dynamic forces generated during an earthquake. There are several types of steel H-beam connections that are commonly used in such structures to provide the required strength and stability. These include: 1. Welded Connection: Welding is a popular method for connecting steel H-beams in seismic structures. It involves fusing the ends of the beams together using heat and pressure. Welded connections are known for their high strength and rigidity, making them suitable for withstanding seismic forces. However, proper welding techniques and inspections are essential to ensure the integrity of the connection. 2. Bolted Connection: Bolted connections involve using bolts and nuts to join the steel H-beams. This method allows for easy assembly and disassembly, making it ideal for structures that may require future modifications. To enhance the seismic performance of bolted connections, high-strength bolts and appropriate washers are used. The bolts are tightened to specific torque requirements to ensure proper clamping force. Regular inspection and maintenance are necessary to prevent loosening of the bolts over time. 3. Moment-Resisting Connection: This type of connection is specifically designed to resist the rotational forces (moments) generated during an earthquake. Moment-resisting connections can be achieved using various techniques, such as welding, bolted flange plate connections, or end-plate connections. These connections provide enhanced stiffness and strength, allowing the structure to distribute seismic forces more effectively. 4. Shear Plate Connection: Shear plate connections involve using steel plates to connect the H-beams. These plates are typically welded to the flanges of the H-beams. Shear plate connections provide excellent resistance against lateral forces and can be designed to accommodate both shear and moment forces. They are commonly used in seismic structures due to their good energy dissipation capabilities. 5. Composite Connection: In composite connections, steel H-beams are connected to other structural elements, such as concrete slabs or columns. Composite connections utilize the combined strength and stiffness of the steel and concrete to enhance seismic resistance. These connections can be achieved through various methods, including welding, bolting, or using connectors specifically designed for composite structures. It is important to note that the selection of the appropriate steel H-beam connection for structures with high seismic activity should be based on careful analysis and engineering considerations. Factors such as the magnitude of seismic forces, structural design requirements, and local building codes should be taken into account to ensure the safety and performance of the overall structure.
Q:Are steel H-beams suitable for structures with curved elements?
Structures with curved elements are not typically compatible with steel H-beams. H-beams are specifically engineered for straight or inflexible structures, such as beams and columns, in order to provide optimal strength and stability. Due to their straight and rigid composition, it is challenging to bend or curve H-beams without compromising their structural integrity. For structures that incorporate curved elements, it is advisable to utilize alternative types of structural members, such as curved steel beams or trusses, which are specifically designed and manufactured to accommodate curved elements while maintaining their structural strength. Implementing steel H-beams in structures with curved elements can result in various challenges and potential issues, including excessive bending stress, deformation, and structural instability. Therefore, consulting with a structural engineer or an expert in steel fabrication is crucial in order to determine the most appropriate structural members for such structures.
Q:What are the cost implications of using Steel H-Beams in construction?
The cost implications of using Steel H-Beams in construction can vary depending on several factors. Generally, steel H-beams are more expensive than other construction materials like wood or concrete. However, they offer numerous benefits such as high strength, durability, and versatility that can outweigh the initial cost. Additionally, steel H-beams require minimal maintenance, reducing long-term expenses. It's important to consider the overall project requirements, structural needs, and budget constraints to determine if steel H-beams are the most cost-effective choice for a particular construction project.
Q:How do steel H-beams perform in areas with high rainfall or moisture?
Steel H-beams perform well in areas with high rainfall or moisture as steel is relatively resistant to corrosion. However, to ensure long-term durability, it is important to apply appropriate protective coatings to prevent rusting and maintain structural integrity. Regular maintenance and inspections are also recommended to identify any potential issues and address them promptly.
Q:What are the common sizes of steel H-beams available in the market?
The common sizes of steel H-beams available in the market vary depending on the specific requirements and applications. However, some standard sizes are commonly found in the market. These sizes typically range from 100mm to 1000mm in height, with widths varying from 50mm to 500mm. The lengths of steel H-beams can also vary, but they are often available in standard lengths of 6 meters, 9 meters, or 12 meters. These common sizes cater to a wide range of construction and structural needs, allowing for flexibility and adaptability in various projects.
Q:Use H section steel to make the beam, the span of 8 meters, the floor slab, what's the minimum H steel? What's the model?
It is recommended to use 300*200*8*12HM H steel
Q:What does H steel column H300*250*6*10-90 represent in steel structure?
H300*250*6*10 indicates that the welded composite H type steel has a web height of 300, web thickness 6, flange width 250, flange thickness 10, and the units are mm.
Q:Can steel H-beams be used in data center construction?
Yes, steel H-beams can be used in data center construction. Steel H-beams are commonly used in construction projects due to their strength, durability, and versatility. They provide excellent load-bearing capabilities, making them suitable for supporting heavy equipment and structures in data centers. Additionally, steel H-beams offer a high degree of flexibility in design and can be easily customized to meet specific construction requirements. Their use ensures the stability and longevity of the data center, making them a popular choice in the construction industry.
Run,a well-known enterprise specializing in the production and sales of H beams and some of I beams. Annual production capacity is 800,000 mtons. We aim to provide the customers qualify and cheap products and satisfatory servise.

1. Manufacturer Overview

Location Tangshan, China
Year Established 2009
Annual Output Value Above US$ 230 Million
Main Markets Mid East; Southeast Asia; Korea
Company Certifications ISO 9001:2008;

2. Manufacturer Certificates

a) Certification Name  
Range  
Reference  
Validity Period  

3. Manufacturer Capability

a)Trade Capacity  
Nearest Port Tianjin;
Export Percentage 81% - 90%
No.of Employees in Trade Department 21-50 People
Language Spoken: English; Chinese;
b)Factory Information  
Factory Size: Above 500,000 square meters
No. of Production Lines 1
Contract Manufacturing OEM Service Offered;
Product Price Range Average

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

Hot products


Hot Searches

Related keywords