• High frequency transformer  isolation PV Grid-Tied Inverter 1.5kw -5.0kw System 1
  • High frequency transformer  isolation PV Grid-Tied Inverter 1.5kw -5.0kw System 2
  • High frequency transformer  isolation PV Grid-Tied Inverter 1.5kw -5.0kw System 3
  • High frequency transformer  isolation PV Grid-Tied Inverter 1.5kw -5.0kw System 4
  • High frequency transformer  isolation PV Grid-Tied Inverter 1.5kw -5.0kw System 5
High frequency transformer  isolation PV Grid-Tied Inverter 1.5kw -5.0kw

High frequency transformer isolation PV Grid-Tied Inverter 1.5kw -5.0kw

Ref Price:
get latest price
Loading Port:
Shanghai
Payment Terms:
TT or LC
Min Order Qty:
50 cm
Supply Capability:
1000 cm/month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

· 5 years warranty
· Sealing stainless steel shell, suitable for indoor or outdoor    installation
· High frequency transformer isolation
· The highest effciency achieves 98%
· Wide input Voltage range
· Adopt connectors type cable connection, Easy operation and installation
· Best tracking effciency with OptiTrac MPP control
· operating temperature range -25 ℃ to + 55℃
· High reliability due to complete protection function
· Anti-theft protection
· Plug-in grounding

HF series 1.5kw — 5.0kw



 

GT1.5-ZX-01/HF

GT2.0-ZX-01/HF

GT2.5-ZX-01/HF

GT3.0-ZX-01/HF

GT4.0-ZX-01/HF

GT5.0-ZX-01/HF

Input(DC)

Max.DC Power

1600W

2100W

2650W

3150W

4200W

5200W

Max.DC Voltage

600V

PV Voltage range, MPPT

150V ~ 550V

150V ~ 550V

Max.input current

10.0A

14.0A

16.0A

20.0A

25.0A

30.0A

Number of MPP trackers

1  

Max.number of strings (parallel)

1

1

2

2

3

3

Output(AC)

Nominal AC power /
Max AC power

1500W

2000W

2500W

3000W

4000W

5000W

Max.output current

13.0A/7.0A

17.0A/9.0A

21.0A/12.0A

25.0A/14.0A

21.0A

30.0A

Nominal AC Voltage / range

102-138Vac/180-264Vac

180-270Vac

AC grid frequency / range

47.5-51.5Hz / 59.3-60.5Hz

Power factor at rated power

1

THD

< 3%

AC connection

Single-phase

Efficiency

Max. efficiency/Californian efficiency

> 98.0% / > 97.0%

MPP adaptation efficiency

> 99.0%

Protection devices

DC reverse polarity protection

AC short-circuit protection

Ground fault monitoring

Grid monitoring

Output Transient Voltage Suppression

Over load

Anti-islanding

General data

Dimensions

(W/ H / D) in mm

350 / 560 / 160

370 / 540 / 185

Weight(Kg)

16

19

23

Operating temperature range

-25 ~ +60

Storage temperature range

-40 ~ +70

Ambient humidity

0 100%

Consumption (night)

< 0.5W

Topology

HF-transformer galvanic isolation

Cooling concept

Convection

Enclosure type

IP65 / NEMA 3R

Features

DC connection: PV special connector

AC connection: connector

LCD display & Backlit

LED display

Interfaces: RS485

Warranty: 10 years

Certificates & approvals

G83 / G59 / TUV / SAA / ETL / JET/ CE

 

 

After-sales Services Undertakings

1. During the equipment commissioning period, the company will send scheduler to commissioning to ensure debugging smoothly and a one-time test commissioning.

2. The company is responsible for professional users’ on-site operator training and technical exchange.

3. The long-term tracking service system: we practice lifelong quality of our product tracking service, and we also will take effective measures and solutions for the user of the technical issues and equipment problems.

4. Regularly listen to opinions and suggestions of users, to provide users with new trends in technological innovation, new product information and enhance mutual understanding.

5. Any problems, the company will provide solutions for users within 48 hours.

 

 

FAQ

1.   How do I decide which system is right for me ?

For protection from long outages, include a generator or solar panels in your Must solar system. Shorter outages can be handled by a battery-only system.

2.    Where my system will be installed ?

Must solar systems are usually wall-mounted near a home's main electrical (circuit breaker) panel.

3. How do I install my system ?

A solar backup inverter is connected to a home electric system , we will supply detailed installation manual and videos for our customers .

 

Q:How do you calculate the efficiency of a solar inverter?
To calculate the efficiency of a solar inverter, you need to divide the output power by the input power and multiply the result by 100 to get a percentage. The formula is: Efficiency = (Output Power / Input Power) * 100.
Q:Can a solar inverter be used with different types of solar PV systems (roof-mounted, ground-mounted, etc.)?
Yes, a solar inverter can be used with different types of solar PV systems, including roof-mounted and ground-mounted systems. Solar inverters are designed to convert the DC (direct current) electricity generated by solar panels into AC (alternating current) electricity that can be used in homes or fed back into the grid. Regardless of the installation type, the solar inverter's function remains the same.
Q:How does a solar inverter handle excess power production?
A solar inverter handles excess power production by converting the surplus energy generated by the solar panels into usable AC power. This excess power is either fed back into the grid or stored in batteries for later use, depending on the type of solar system setup.
Q:Can a solar inverter be used in a remote location without access to the grid?
Yes, a solar inverter can be used in a remote location without access to the grid. Solar inverters are designed to convert the direct current (DC) generated by solar panels into the alternating current (AC) that can be used to power electrical devices. In remote locations, solar panels can be used to generate electricity independently, and the solar inverter can then convert this DC power into AC power for immediate use or to be stored in batteries for later use. This allows for the utilization of solar energy even in areas without grid connectivity.
Q:Are there any disadvantages of using a solar inverter?
Yes, there are some disadvantages of using a solar inverter. One disadvantage is the initial cost of purchasing and installing the inverter, which can be quite expensive. Additionally, solar inverters are dependent on sunlight, so if there is a lack of sunlight or during nighttime, the inverter may not be able to generate electricity. Another potential disadvantage is the need for regular maintenance and potential repairs, which can add to the overall cost of using a solar inverter. Finally, the efficiency of solar inverters can be affected by factors such as shading, dust, or dirt on the solar panels, which can decrease their overall performance.
Q:Can a solar inverter be used with a string inverter system?
No, a solar inverter cannot be used with a string inverter system. Solar inverters and string inverters are two different types of inverters that serve different functions in a solar power system. A solar inverter is designed to convert the DC power generated by solar panels into AC power for use in homes or businesses. On the other hand, a string inverter is used to convert the DC power generated by multiple solar panels connected in series, known as a string, into AC power. Therefore, these two types of inverters are not compatible with each other.
Q:What is the role of a maximum power control feature in a solar inverter?
The role of a maximum power control feature in a solar inverter is to optimize the energy output of the solar panels by constantly tracking and adjusting the operating point to ensure that the system operates at its maximum power point (MPP). This feature helps to increase the overall efficiency of the solar system and maximize the amount of energy that can be harvested from the sun.
Q:Can a solar inverter be used with a solar-powered electric gate system?
Yes, a solar inverter can be used with a solar-powered electric gate system. The solar inverter converts the direct current (DC) generated by the solar panels into alternating current (AC) that is required to power the electric gate system. This allows the solar energy captured by the solar panels to be utilized effectively in operating the electric gate system.
Q:Are there any safety risks associated with solar inverters?
Yes, there are some safety risks associated with solar inverters. These risks primarily include electric shock and fire hazards. It is important to ensure proper installation, grounding, and maintenance of solar inverters to minimize these risks. Additionally, regular inspections and adherence to safety guidelines are crucial to mitigate any potential hazards.
Q:Can a solar inverter be used with a solar-powered air purification system?
Yes, a solar inverter can be used with a solar-powered air purification system. A solar inverter is responsible for converting the direct current (DC) generated by a solar panel into usable alternating current (AC) that can power electrical appliances. In the case of a solar-powered air purification system, the solar inverter can convert the DC electricity produced by the solar panels into AC power needed to operate the air purification system, allowing it to function efficiently with solar energy.

1. Manufacturer Overview

Location
Year Established
Annual Output Value
Main Markets
Company Certifications

2. Manufacturer Certificates

a) Certification Name  
Range  
Reference  
Validity Period  

3. Manufacturer Capability

a)Trade Capacity  
Nearest Port
Export Percentage
No.of Employees in Trade Department
Language Spoken:
b)Factory Information  
Factory Size:
No. of Production Lines
Contract Manufacturing
Product Price Range

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

New products

Hot products


Hot Searches

Related keywords