• 1800 Watt High Frequency Transformer Isolation PV Grid-Tied Inverter System 1
  • 1800 Watt High Frequency Transformer Isolation PV Grid-Tied Inverter System 2
  • 1800 Watt High Frequency Transformer Isolation PV Grid-Tied Inverter System 3
  • 1800 Watt High Frequency Transformer Isolation PV Grid-Tied Inverter System 4
  • 1800 Watt High Frequency Transformer Isolation PV Grid-Tied Inverter System 5
  • 1800 Watt High Frequency Transformer Isolation PV Grid-Tied Inverter System 6
1800 Watt High Frequency Transformer Isolation PV Grid-Tied Inverter

1800 Watt High Frequency Transformer Isolation PV Grid-Tied Inverter

Ref Price:
get latest price
Loading Port:
Shanghai
Payment Terms:
TT or LC
Min Order Qty:
100 mm
Supply Capability:
1000 mm/month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

characteristics:

5 years warranty
· Sealing stainless steel shell, suitable for indoor or outdoor    installation
· High frequency transformer isolation
· The highest effciency achieves 98%
· Wide input Voltage range
· Adopt connectors type cable connection, Easy operation and installation
· Best tracking effciency with OptiTrac MPP control
· operating temperature range -25 ℃ to + 55℃
· High reliability due to complete protection function
· Anti-theft protection
· Plug-in grounding

HF series 1.5kw — 5.0kw


High frequency transformer isolation is the main feature of our production, which make Installation easier due to the reduced weight and higher conversion effciency because of omitting Low frequency transformer. The wide input voltage range from 180 to 600volt gives you extraordinary fexibility for you system design. Not need to set graphic display and RS485 communication system make the devices highly user-friendly.


This product can by multi-level parallel combination for 6kw to 20kw needed any power grade HF series technical parameter.


parameters:

GT1.5-ZX-01/HF

GT2.0-ZX-01/HF

GT2.5-ZX-01/HF

GT3.0-ZX-01/HF

GT4.0-ZX-01/HF

GT5.0-ZX-01/HF

Input(DC)

Max.DC Power

1600W

2100W

2650W

3150W

4200W

5200W

Max.DC Voltage

600V

PV Voltage range, MPPT

150V ~ 550V

150V ~ 550V

Max.input current

10.0A

14.0A

16.0A

20.0A

25.0A

30.0A

Number of MPP trackers

1

Max.number of strings (parallel)

1

1

2

2

3

3

Output(AC)

Nominal AC power /
Max AC power

1500W

2000W

2500W

3000W

4000W

5000W

Max.output current

13.0A/7.0A

17.0A/9.0A

21.0A/12.0A

25.0A/14.0A

21.0A

30.0A

Nominal AC Voltage / range

102-138Vac/180-264Vac

180-270Vac

AC grid frequency / range

47.5-51.5Hz / 59.3-60.5Hz

Power factor at rated power

1

THD

< 3%

AC connection

Single-phase

Efficiency

Max. efficiency/Californian efficiency

> 98.0% / > 97.0%

MPP adaptation efficiency

> 99.0%

Protection devices

DC reverse polarity protection

AC short-circuit protection

Ground fault monitoring

Grid monitoring

Output Transient Voltage Suppression

Over load

Anti-islanding

General data

Dimensions

(W/ H / D) in mm

350 / 560 / 160

370 / 540 / 185

Weight(Kg)

16

19

23

Operating temperature range

-25 ~ +60

Storage temperature range

-40 ~ +70

Ambient humidity

0 100%

Consumption (night)

< 0.5W

Topology

HF-transformer galvanic isolation

Cooling concept

Convection

Enclosure type

IP65 / NEMA 3R

Features

DC connection: PV special connector

AC connection: connector

LCD display & Backlit

LED display

Interfaces: RS485

Warranty: 10 years

Certificates & approvals

G83 / G59 / TUV / SAA / ETL / JET/ CE

certificates:

The Australian SAA certification

- GT3.0-ZX-01

- GT2.5-ZX-01
- GT2.0-ZX-01




Q1 : What is you advantages

A1:

a).We are professional ups manufacturer for more than ten years and we have these staffs with rich

     production and R&D 

b) Excellent workers and skilled engineers 

c).Our aims are to provide every customer high quality, reasonable price and excellent 

    service.

 d)we can guarantee to send the goods on time. And also accept any transportation ways that

    you require 

 

Q2 : How do you control the production quality

A2:

a) For materials, we have IQC departments and the IQC testing follow MIL-STD-105E standard

b) in production have 4 times function testing

c) all of our products with 100% burn-in testing

d) 100% QC testing before delivery

 

Q3 : Do you accept OEM/ODM?

A3 : ODM&OEM are warmly welcomed !!!

Q: How does a solar inverter handle varying solar irradiance levels?
A solar inverter handles varying solar irradiance levels by continuously monitoring the incoming solar energy and adjusting its output accordingly. When the solar irradiance level is high, the inverter increases its output voltage to maximize power conversion. Conversely, when the solar irradiance level drops, the inverter reduces its output voltage to maintain a steady and efficient power conversion. This adaptive response ensures that the solar inverter efficiently converts the available solar energy into usable electricity regardless of the varying solar irradiance levels.
Q: How does a solar inverter handle grid faults or disturbances?
A solar inverter handles grid faults or disturbances by continuously monitoring the grid voltage and frequency. When a fault or disturbance is detected, the solar inverter quickly disconnects from the grid to ensure safety and protect the system. It then enters a standby mode until the grid returns to normal conditions. Once the grid stabilizes, the solar inverter reconnects and resumes its normal operation of converting solar energy into usable electricity.
Q: Can a solar inverter be used with a solar-powered agriculture system?
Yes, a solar inverter can be used with a solar-powered agriculture system. A solar inverter is essential for converting the direct current (DC) electricity produced by solar panels into alternating current (AC) electricity required to power electrical devices and equipment used in the agriculture system. This allows for the efficient utilization of solar energy for various agricultural applications such as irrigation systems, pumps, lighting, and other electrical equipment.
Q: What are the advantages of using a three-phase solar inverter?
There are several advantages to using a three-phase solar inverter. Firstly, three-phase solar inverters allow for higher power output compared to single-phase inverters. This is because they distribute the power across three phases, resulting in increased efficiency and capacity. Additionally, three-phase inverters provide better voltage stability and balance across the three phases of a power grid. This is particularly beneficial in commercial or industrial settings where there may be heavy loads and varying power demands. Furthermore, three-phase solar inverters offer improved reliability and durability. They are designed to handle higher currents and can withstand higher temperatures, ensuring a longer lifespan and reducing maintenance requirements. Lastly, three-phase inverters are more cost-effective in large-scale solar installations. They allow for better utilization of available grid infrastructure, reducing transmission losses and optimizing power distribution. Overall, the advantages of using a three-phase solar inverter include higher power output, improved voltage stability, enhanced reliability, and cost-effectiveness in larger-scale installations.
Q: What are the potential risks of short-circuiting a solar inverter?
Short-circuiting a solar inverter can pose several potential risks. Firstly, it can cause damage to the inverter itself, leading to its malfunction or complete failure. Secondly, it can result in overheating of the inverter, which may increase the risk of fire or electrical hazards. Additionally, short-circuiting can disrupt the flow of electricity, potentially causing damage to other connected equipment or appliances. Lastly, it may void the warranty of the solar inverter, resulting in additional expenses for repairs or replacements. Therefore, it is crucial to take proper precautions and avoid short-circuiting the solar inverter to ensure its safe and efficient operation.
Q: What is the role of a solar inverter in power factor correction?
The role of a solar inverter in power factor correction is to convert the direct current (DC) generated by the solar panels into alternating current (AC) that can be used by the electrical grid. In doing so, the solar inverter ensures that the AC power being fed into the grid has a power factor close to unity, which means it is efficient and does not cause any unnecessary strain on the electrical system. This helps to improve the overall power quality and efficiency of the solar energy system.
Q: Can a solar inverter be used with different types of grid support functions?
Yes, a solar inverter can be used with different types of grid support functions. Solar inverters are designed to convert the direct current (DC) produced by solar panels into alternating current (AC) that can be fed into the electrical grid. They can be configured to provide various grid support functions such as reactive power control, voltage and frequency regulation, and anti-islanding protection. These functions allow solar inverters to actively support the stability and reliability of the grid, regardless of the specific requirements of the grid system.
Q: What is the role of a solar inverter in a net metering system?
The role of a solar inverter in a net metering system is to convert the direct current (DC) electricity generated by the solar panels into alternating current (AC) electricity, which is compatible with the electrical grid. The inverter also synchronizes the solar system with the grid, ensuring that excess electricity generated by the solar panels is fed back into the grid, allowing for net metering and the possibility of earning credits for the surplus energy generated.
Q: What is the role of a solar inverter in voltage and frequency regulation during grid disturbances?
Maintaining the stability and reliability of the electrical grid heavily depends on the crucial role of a solar inverter in voltage and frequency regulation during grid disturbances. To regulate and stabilize the electrical parameters, the solar inverter acts as a control device during grid disturbances like voltage fluctuations or frequency deviations. Regarding voltage regulation, the solar inverter constantly monitors the grid's voltage level and adjusts its output accordingly. It decreases its output if the grid voltage increases to avoid overvoltage conditions. Conversely, if the grid voltage decreases, the inverter increases its output to compensate and maintain a stable voltage level. This regulation guarantees that the solar inverter's voltage aligns with the grid's requirements, preventing harm to electrical equipment and ensuring the grid's safe operation. Similarly, the solar inverter also contributes to frequency regulation during grid disturbances. It continuously monitors the grid's frequency and adjusts its output frequency to match it. If the grid frequency deviates from the standard frequency, the inverter modifies its output frequency to bring it back to the desired level. This frequency regulation is vital to keep various electrical devices connected to the grid synchronized, preventing equipment damage, and ensuring the grid's stability. In summary, the solar inverter's role in voltage and frequency regulation during grid disturbances is to provide stability and reliability to the electrical grid. It acts as a control device that constantly monitors and adjusts its output to maintain the desired voltage and frequency levels. This ensures the prevention of potential damage to electrical equipment and guarantees the smooth operation of the grid.
Q: How does a solar inverter handle reactive power?
A solar inverter handles reactive power by actively managing and controlling the flow of reactive power between the solar panels and the electrical grid. It uses advanced electronics and control algorithms to ensure that the reactive power generated by the solar panels is either supplied to or absorbed from the grid, depending on the grid's requirements. This helps to maintain the power factor within acceptable limits and prevents issues such as voltage instability or flickering.

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

Hot products


Hot Searches

Related keywords