• Used Grid Connected Solar Inverter 4000-6000UE System 1
  • Used Grid Connected Solar Inverter 4000-6000UE System 2
  • Used Grid Connected Solar Inverter 4000-6000UE System 3
  • Used Grid Connected Solar Inverter 4000-6000UE System 4
  • Used Grid Connected Solar Inverter 4000-6000UE System 5
Used Grid Connected Solar Inverter 4000-6000UE

Used Grid Connected Solar Inverter 4000-6000UE

Ref Price:
$990.00 - 1,270.00 / pc get latest price
Loading Port:
Shekou
Payment Terms:
TT or LC
Min Order Qty:
10 pc
Supply Capability:
10000 pc/month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Grid Connected Solar Inverter 4000-6000UE


Tri-power excellent inverter for small residential and commercial projects

DC input voltage up to 800V

Maximum efficiency of 97.9%

Internal DC switch

Transformerless

Compact design

Multi MPP controller

MTL-string

Bluetooth/ RF technology/ WiFi

Sound control

Easy installation


Grid Connected Solar Inverter 4000-6000UE


Grid Connected Solar Inverter 4000-6000UE


4000UE

5000UE

6000UE


Inputdata
Max.DCpower4200W5200W6300W
Max. DC voltage800V800V800V
Start Voltage150V150V150V
PV voltage range140V-800V140V-800V140V-800V
MPP voltage range
/Nominal voltage
200V-800V/ 580V200V-800V/ 580V200V-800V/ 580V
Full load DC voltage range250V-750V300V-750V350V-750V
Max. input current / per string9A/9A9A/9A10A/10A
Number of independent MPP
trackers/strings per MPP tracker
2/12/12/1

Output (AC)


Rated AC output power4000W5000W6000W
       Max. AC apparent power4000VA5000VA6000VA
Max. output current6.4A7.9A9.3A
Max. short-circuit current20A20A20A
AC nominal voltage ;range230/400V;184-275V230/400V;184-275V230/400V;184-275V
AC grid frequency; range50Hz,60Hz; ±5Hz50Hz,60Hz; ±5Hz50Hz,60Hz; ±5Hz
Displacement power factor
configurable
0.9leading-0.9lagging0.9leading-0.9lagging0.9leading-0.9lagging
THDI<3%<3%<3%
Grid connection type3/N/PE,3W+PE(opt)3/N/PE,3W+PE(opt)3/N/PE,3W+PE(opt)
Efficiency

Max.efficiency
Euro-eta
MPPT efficiency

97%
95.1%
99.5%

97.4%
96.3%
99.5%

97.5%
96.5%
99.5%


Features

DC connection

AC connection

Display
Interface:RS232/RS485/
Bluetooth/RF/WiFi
Warranty: 5years/10years

H4/MC4(opt)

Screw terminal

LCD
yes/yes/

opt/opt/opt
yes/opt

H4/MC4(opt)

Screw terminal

LCD

yes/yes/

opt/opt/opt

yes/opt


H4/MC4(opt)

Screw terminal

LCD

yes/yes/

opt/opt/opt

yes/opt


Generaldata

Dimensions(W/H/D) in mm
Weight
Operating temperature range
Noise emission(typical)
Self consumption (night)
Topology
Cooling concept
Environmental Protection rating
Altitude
Relative Humidity

433/566/195
30KG
-25℃ ... +60℃
≤35dB(A)
<0.5W
Transformerless
Natural
IP65
2000m without derating
0~100%

433/566/195

31.1KG
-25℃ ... +60℃
≤35dB(A)
<0.5W
Transformerless
Smart cooling
IP65
2000m without derating
0~100%

433/566/195

31.1KG
-25℃ ... +60℃
≤35dB(A)
<0.5W
Transformerless
Smart cooling
IP65
2000m without derating
0~100%

Certificates and ApprovalsCE, VDE0126-1-1, VDE-AR-N4105, IEC 62109-1/-2, C-tick, AS/NZS 3100, AS4777, EN61000-6-2 , EN61000-6-3, IEC61727, IEC62116, G83, EN50438



Q: How does the harmonic distortion affect the performance of a solar inverter?
Harmonic distortion affects the performance of a solar inverter by introducing unwanted frequencies and distortion in the output waveform. This can lead to reduced efficiency, increased power losses, and potential damage to connected electrical devices. It can also cause electromagnetic interference and compatibility issues with the utility grid or other connected systems. Therefore, minimizing harmonic distortion is crucial to ensure optimal performance and reliable operation of a solar inverter.
Q: Can a solar inverter be used in grid-tied systems?
Yes, a solar inverter can be used in grid-tied systems. In fact, a grid-tied system requires a solar inverter to convert the DC power generated by the solar panels into AC power that can be fed into the electrical grid. The solar inverter also ensures that the system synchronizes with the grid and complies with safety regulations.
Q: What is the role of a power optimizer in a solar inverter?
The role of a power optimizer in a solar inverter is to maximize the energy output of each individual solar panel in a solar power system. It works by continuously monitoring and optimizing the performance of each panel, ensuring that it operates at its maximum power point. This helps to overcome shading, mismatch, and other factors that can negatively impact the overall system efficiency. By optimizing the power output of each panel, power optimizers enhance the overall energy production of the solar power system, leading to increased electricity generation and improved system performance.
Q: Can a solar inverter be used with a smart home automation system?
Certainly! A smart home automation system can indeed work together with a solar inverter. Nowadays, many solar inverters come with communication capabilities built-in, like Wi-Fi or Ethernet connectivity. This means that they can easily be integrated into a smart home automation system. This integration allows homeowners to remotely monitor and control their solar power production and usage using a smartphone app or a central control panel. By having a smart home automation system, users can keep track of real-time energy generation, make adjustments to settings, and receive notifications about system performance or any potential issues. This integration not only enhances the convenience and efficiency of managing solar power but also enables better optimization and synchronization with other smart devices and appliances in the household.
Q: What is the role of a power factor correction circuit in a solar inverter?
The role of a power factor correction circuit in a solar inverter is to optimize the power factor of the electrical system. It ensures that the energy being generated by the solar panels is efficiently utilized by balancing the reactive power and reducing harmonic distortions. This helps in improving the overall system efficiency, reducing energy losses, and complying with grid regulations.
Q: How does the input power rating affect the performance of a solar inverter?
The input power rating of a solar inverter directly affects its performance. A higher input power rating allows the inverter to handle a greater amount of power from the solar panels. This means that it can convert and deliver more electricity to the grid or load, resulting in improved performance and higher energy production. Conversely, a lower input power rating may limit the inverter's ability to handle high power inputs, leading to reduced efficiency and potentially lower energy output. Therefore, the input power rating is a crucial factor in determining the overall performance of a solar inverter.
Q: What is the maximum DC input current that a solar inverter can handle?
The maximum DC input current that a solar inverter can handle depends on the specifications and capabilities of the specific model. It can vary significantly, ranging from a few amperes to several hundred amperes, based on factors such as the power rating and design of the inverter.
Q: How does a solar inverter communicate with other devices?
A solar inverter typically communicates with other devices through wired or wireless connections. It can use protocols like Modbus, RS485, or Ethernet to establish communication with monitoring systems, smart meters, or other devices. This allows for data exchange, control signals, and monitoring capabilities, enabling efficient management and integration of the solar power system with other components of a renewable energy infrastructure.
Q: How does a solar inverter synchronize with the electrical grid?
A solar inverter synchronizes with the electrical grid by constantly monitoring the grid's voltage and frequency. It adjusts its own output voltage and frequency to match those of the grid, ensuring seamless integration and safe operation. This synchronization process allows the solar inverter to feed power into the grid and maintain grid stability.
Q: How do you choose the right size of solar inverter for a system?
To choose the right size of solar inverter for a system, several factors need to be considered. Firstly, you should determine the total capacity of the solar panels in the system. The inverter's maximum input power rating should be equal to or slightly higher than the total capacity of the panels. Additionally, the inverter's voltage rating should match the system's voltage requirements. It is also crucial to consider the inverter's efficiency, as a higher efficiency rating will ensure better conversion of solar energy into electricity. Lastly, it is advisable to consult a professional or use online calculators to accurately determine the appropriate size of the inverter based on the specific needs and requirements of the system.

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

Hot products


Hot Searches

Related keywords