• Utl Solar Inverter High Frequency Transformer Isolation PV Grid-Tied Inverter System 1
  • Utl Solar Inverter High Frequency Transformer Isolation PV Grid-Tied Inverter System 2
  • Utl Solar Inverter High Frequency Transformer Isolation PV Grid-Tied Inverter System 3
  • Utl Solar Inverter High Frequency Transformer Isolation PV Grid-Tied Inverter System 4
  • Utl Solar Inverter High Frequency Transformer Isolation PV Grid-Tied Inverter System 5
Utl Solar Inverter High Frequency Transformer Isolation PV Grid-Tied Inverter

Utl Solar Inverter High Frequency Transformer Isolation PV Grid-Tied Inverter

Ref Price:
get latest price
Loading Port:
Shanghai
Payment Terms:
TT or LC
Min Order Qty:
1000 cm
Supply Capability:
1000 cm/month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

1. Structure of High frequency transformer isolation PV Grid-Tied Inverter Description:

•The first manufacturer authorized by ETL institution in china;

 

• The first china HF PV grid-tied inverter tested by the PHOTON Lab with UL standard, reach the top level compared with SMA Sunny Boy HF series.

 

2. High frequency transformer isolation PV Grid-Tied Inverter Images

 


 

3. High frequency transformer isolation PV Grid-Tied Inverter Specification

 

GT1.5-ZX-01/HF

GT2.0-ZX-01/HF

GT2.5-ZX-01/HF

GT3.0-ZX-01/HF

GT4.0-ZX-01/HF

GT5.0-ZX-01/HF

Input(DC)

Max.DC Power

1600W

2100W

2650W

3150W

4200W

5200W

Max.DC Voltage

600V

PV Voltage range, MPPT

150V ~ 550V

150V ~ 550V

Max.input current

10.0A

14.0A

16.0A

20.0A

25.0A

30.0A

Number of MPP trackers

1  

Max.number of strings (parallel)

1

1

2

2

3

3

Output(AC)

Nominal AC power /

1500W

2000W

2500W

3000W

4000W

5000W

Max AC power

Max.output current

13.0A/7.0A

17.0A/9.0A

21.0A/12.0A

25.0A/14.0A

21.0A

30.0A

Nominal AC Voltage / range

102-138Vac/180-264Vac

180-270Vac

AC grid frequency / range

47.5-51.5Hz / 59.3-60.5Hz

Power factor at rated power

1

THD

< 3%

AC connection

Single-phase

Efficiency

Max. efficiency/Californian efficiency

> 98.0% / > 97.0%

MPP adaptation efficiency

> 99.0%

Protection devices

DC reverse polarity protection

AC short-circuit protection

Ground fault monitoring

Grid monitoring

Output Transient Voltage Suppression

Over load

Anti-islanding

General data

Dimensions

350 / 560 / 160

370 / 540 / 185

(W/ H / D) in mm

Weight(Kg)

16

19

23

Operating temperature range

-25 ~ +60

Storage temperature range

-40 ~ +70

Ambient humidity

0 100%

Consumption (night)

< 0.5W

Topology

HF-transformer galvanic isolation

Cooling concept

Convection

Enclosure type

IP65 / NEMA 3R

Features

DC connection: PV special connector

AC connection: connector

LCD display & Backlit

LED display

Interfaces: RS485

Warranty: 10 years

Certificates & approvals

G83 / G59 / TUV / SAA / ETL / JET/ CE

 

4. Features of High frequency transformer isolation PV Grid-Tied Inverter

   ·5 years warranty

· Sealing stainless steel shell, suitable for indoor or outdoor    installation

· High frequency transformer isolation

· The highest effciency achieves 98%

· Wide input Voltage range

· Adopt connectors type cable connection, Easy operation and installation

· Best tracking effciency with OptiTrac MPP control

· operating temperature range -25 to + 55

· High reliability due to complete protection function

· Anti-theft protection

· Plug-in grounding

 

Q: How efficient are solar inverters?
Solar inverters are highly efficient, with most modern models achieving efficiency levels above 95%. This means that they can convert a large majority of the direct current (DC) electricity generated by solar panels into alternating current (AC) electricity for use in homes or businesses. The high efficiency of solar inverters helps maximize the overall energy output and financial benefits of solar power systems.
Q: Can a solar inverter be used with different solar panel technologies?
Yes, a solar inverter can be used with different solar panel technologies. Solar inverters are designed to convert the direct current (DC) produced by solar panels into alternating current (AC) for use in homes and businesses. They are typically compatible with various solar panel technologies, such as monocrystalline, polycrystalline, and thin-film panels. However, it is important to ensure that the inverter's specifications and capabilities align with the specific solar panel technology being used for optimal performance and efficiency.
Q: Can a solar inverter be used with a solar water heating system?
No, a solar inverter cannot be used with a solar water heating system. A solar inverter is designed to convert the direct current (DC) electricity produced by solar panels into alternating current (AC) electricity for use in the home or to be fed back into the grid. On the other hand, a solar water heating system uses the sun's energy to heat water directly, without the need for electricity conversion.
Q: Can a solar inverter be used with a three-phase power system?
Yes, a solar inverter can be used with a three-phase power system. In fact, many commercial and industrial solar installations utilize three-phase power systems to effectively distribute and manage the generated solar energy. A three-phase solar inverter is designed to convert the direct current (DC) produced by solar panels into alternating current (AC) that is compatible with the three-phase power grid. This allows for efficient power transmission and utilization of solar energy in three-phase systems.
Q: What is the role of a power limiter in a solar inverter?
The role of a power limiter in a solar inverter is to regulate and limit the amount of power that is fed into the electrical grid. It helps ensure that the solar system does not exceed the maximum power capacity of the grid, preventing any potential damage or overloading. The power limiter also helps maintain a stable and balanced power output, optimizing the efficiency and performance of the solar inverter.
Q: What are the key factors affecting the efficiency of a solar inverter?
The key factors affecting the efficiency of a solar inverter include the quality and design of the components used, the temperature at which the inverter operates, the type and condition of the solar panels connected to it, the efficiency of the conversion process from DC to AC power, and the overall system design and installation.
Q: Are there any limitations on the angle of the solar panels when using a solar inverter?
Solar panels must adhere to certain limitations in terms of their angle when using a solar inverter. The efficiency and overall performance of solar panels can be influenced by the angle at which they are installed. Ideally, solar panels should be positioned at an angle that allows them to receive the maximum amount of sunlight throughout the day. Typically, solar panels are designed to function optimally when installed at an angle that matches the latitude of the location. This angle enables the panels to capture the most sunlight during peak hours. However, this is not an absolute rule, as variations are feasible depending on specific location and climate conditions. If solar panels are installed at angles that are excessively steep or shallow, it can result in decreased energy production. Steep angles may cause sunlight to be lost during certain times of the day, while shallow angles may not allow for optimal sunlight absorption. Moreover, extreme angles can increase the risk of damage from wind or other weather conditions. It is worth noting that modern solar inverters often incorporate advanced tracking and monitoring technologies, which can adapt to different panel angles and orientations. These features can optimize energy production by adjusting the inverter settings based on the real-time performance of the panels. Ultimately, while there are limitations concerning the angle of solar panels, it is crucial to ensure that they are installed in a manner that maximizes their exposure to sunlight throughout the day, in order to achieve the highest possible energy production.
Q: How does a three-phase solar inverter differ from a single-phase inverter?
A three-phase solar inverter differs from a single-phase inverter in terms of the number of input and output phases it can handle. While a single-phase inverter can only handle a single-phase input and output, a three-phase inverter is designed to handle three-phase input and output. This allows for a more efficient and balanced distribution of power in three-phase electrical systems, making three-phase inverters suitable for larger solar installations or commercial applications.
Q: How does a solar inverter handle voltage sags and swells?
A solar inverter handles voltage sags and swells by constantly monitoring the grid voltage. When a sag or swell is detected, it quickly adjusts its output voltage accordingly to ensure a stable and consistent flow of power to the connected solar panels. This helps protect the panels from potential damage and maintains optimal performance.
Q: How does a solar inverter handle voltage flicker?
A solar inverter handles voltage flicker by regulating and stabilizing the voltage output. It detects any fluctuations in the grid voltage caused by flicker and adjusts the output accordingly to maintain a consistent and stable voltage for the connected solar panels or other electrical devices.

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

Hot products


Hot Searches

Related keywords