• Utl Solar Inverter High Frequency Transformer Isolation PV Grid-Tied Inverter System 1
  • Utl Solar Inverter High Frequency Transformer Isolation PV Grid-Tied Inverter System 2
  • Utl Solar Inverter High Frequency Transformer Isolation PV Grid-Tied Inverter System 3
  • Utl Solar Inverter High Frequency Transformer Isolation PV Grid-Tied Inverter System 4
  • Utl Solar Inverter High Frequency Transformer Isolation PV Grid-Tied Inverter System 5
Utl Solar Inverter High Frequency Transformer Isolation PV Grid-Tied Inverter

Utl Solar Inverter High Frequency Transformer Isolation PV Grid-Tied Inverter

Ref Price:
get latest price
Loading Port:
Shanghai
Payment Terms:
TT or LC
Min Order Qty:
1000 cm
Supply Capability:
1000 cm/month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

1. Structure of High frequency transformer isolation PV Grid-Tied Inverter Description:

•The first manufacturer authorized by ETL institution in china;

 

• The first china HF PV grid-tied inverter tested by the PHOTON Lab with UL standard, reach the top level compared with SMA Sunny Boy HF series.

 

2. High frequency transformer isolation PV Grid-Tied Inverter Images

 


 

3. High frequency transformer isolation PV Grid-Tied Inverter Specification

 

GT1.5-ZX-01/HF

GT2.0-ZX-01/HF

GT2.5-ZX-01/HF

GT3.0-ZX-01/HF

GT4.0-ZX-01/HF

GT5.0-ZX-01/HF

Input(DC)

Max.DC Power

1600W

2100W

2650W

3150W

4200W

5200W

Max.DC Voltage

600V

PV Voltage range, MPPT

150V ~ 550V

150V ~ 550V

Max.input current

10.0A

14.0A

16.0A

20.0A

25.0A

30.0A

Number of MPP trackers

1  

Max.number of strings (parallel)

1

1

2

2

3

3

Output(AC)

Nominal AC power /

1500W

2000W

2500W

3000W

4000W

5000W

Max AC power

Max.output current

13.0A/7.0A

17.0A/9.0A

21.0A/12.0A

25.0A/14.0A

21.0A

30.0A

Nominal AC Voltage / range

102-138Vac/180-264Vac

180-270Vac

AC grid frequency / range

47.5-51.5Hz / 59.3-60.5Hz

Power factor at rated power

1

THD

< 3%

AC connection

Single-phase

Efficiency

Max. efficiency/Californian efficiency

> 98.0% / > 97.0%

MPP adaptation efficiency

> 99.0%

Protection devices

DC reverse polarity protection

AC short-circuit protection

Ground fault monitoring

Grid monitoring

Output Transient Voltage Suppression

Over load

Anti-islanding

General data

Dimensions

350 / 560 / 160

370 / 540 / 185

(W/ H / D) in mm

Weight(Kg)

16

19

23

Operating temperature range

-25 ~ +60

Storage temperature range

-40 ~ +70

Ambient humidity

0 100%

Consumption (night)

< 0.5W

Topology

HF-transformer galvanic isolation

Cooling concept

Convection

Enclosure type

IP65 / NEMA 3R

Features

DC connection: PV special connector

AC connection: connector

LCD display & Backlit

LED display

Interfaces: RS485

Warranty: 10 years

Certificates & approvals

G83 / G59 / TUV / SAA / ETL / JET/ CE

 

4. Features of High frequency transformer isolation PV Grid-Tied Inverter

   ·5 years warranty

· Sealing stainless steel shell, suitable for indoor or outdoor    installation

· High frequency transformer isolation

· The highest effciency achieves 98%

· Wide input Voltage range

· Adopt connectors type cable connection, Easy operation and installation

· Best tracking effciency with OptiTrac MPP control

· operating temperature range -25 to + 55

· High reliability due to complete protection function

· Anti-theft protection

· Plug-in grounding

 

Q:How does a solar inverter handle variations in ambient temperature?
A solar inverter is designed to handle variations in ambient temperature by incorporating temperature compensation algorithms. These algorithms adjust the inverter's performance parameters, such as voltage and frequency, based on temperature measurements. This ensures that the inverter operates optimally and efficiently across a wide range of temperature conditions, maintaining stable and reliable power conversion from the solar panels.
Q:Can a solar inverter be used with concentrated photovoltaic thermal systems?
Yes, a solar inverter can be used with concentrated photovoltaic thermal (CPVT) systems. CPVT systems combine concentrated solar thermal technology with photovoltaic cells to generate both electricity and heat. The solar inverter converts the direct current (DC) produced by the photovoltaic cells into alternating current (AC) that can be used to power electrical devices or be fed into the grid. Therefore, a solar inverter is an essential component in the integration of CPVT systems with the electrical grid or for utilization in standalone applications.
Q:Can a solar inverter be used with solar-powered streetlights?
Yes, a solar inverter can be used with solar-powered streetlights. The solar inverter is responsible for converting the direct current (DC) produced by the solar panels into alternating current (AC) that can be used to power streetlights. This conversion allows the solar-powered streetlights to operate efficiently and effectively, utilizing the energy generated by the solar panels.
Q:Can a solar inverter be used without solar panels?
No, a solar inverter cannot be used without solar panels. The purpose of a solar inverter is to convert the direct current (DC) generated by solar panels into alternating current (AC) that can be used to power electrical devices in a home or building. Without solar panels producing DC electricity, there would be no input for the inverter to convert.
Q:Can a solar inverter be used in mobile applications?
Yes, a solar inverter can be used in mobile applications. Mobile solar inverters are specifically designed to convert the direct current (DC) power generated by solar panels into alternating current (AC) power that can be used to charge mobile devices or power small appliances while on the go. These inverters are typically compact, lightweight, and have features like USB ports or built-in batteries to provide convenient and portable power solutions.
Q:How does a solar inverter handle voltage fluctuation during cloud cover?
A solar inverter handles voltage fluctuation during cloud cover by continuously monitoring and adjusting the output voltage to compensate for the reduced solar energy input. This is typically achieved through advanced control algorithms that optimize the inverter's power output to maintain a stable voltage level, ensuring a smooth transition during periods of cloud cover and minimizing any disruptions to the electrical system.
Q:What is the maximum voltage input for a solar inverter?
The maximum voltage input for a solar inverter typically depends on the specific model and manufacturer. However, in general, it ranges from around 600 to 1000 volts, with some higher-end models able to handle higher voltages.
Q:Can a solar inverter be used with a solar-powered backup generator?
Yes, a solar inverter can be used with a solar-powered backup generator. A solar inverter is responsible for converting the DC (direct current) electricity generated by solar panels into AC (alternating current) electricity that can be used to power household appliances and other electrical devices. A solar-powered backup generator, on the other hand, uses solar energy to charge its batteries or store excess electricity. When the solar panels are generating electricity, the solar inverter will convert the DC electricity into AC electricity, which can be used directly in the household or sent back to the grid if the system is connected to it. If there is excess electricity being generated and the batteries of the solar-powered backup generator are fully charged, the solar inverter can divert the excess electricity to other loads or devices. During periods when solar energy is insufficient or not available, the solar-powered backup generator can kick in and provide the necessary electricity to power the house or recharge the batteries. In this case, the solar inverter will still be responsible for converting the DC electricity generated by the solar-powered backup generator into AC electricity. So, to summarize, a solar inverter can definitely be used with a solar-powered backup generator to ensure a continuous supply of electricity even when solar energy is limited.
Q:What are the key differences between a central inverter and a string inverter?
The key differences between a central inverter and a string inverter lie in their design and functionality. A central inverter is a large, centralized unit that converts the DC electricity generated by a solar array into AC electricity. It is typically installed in a central location, such as a utility room, and is responsible for converting the power from multiple strings of panels simultaneously. On the other hand, a string inverter is a smaller unit that is installed close to the solar panels and converts the DC power from each individual string into AC power. One major difference is the level of scalability. Central inverters are typically used in larger solar installations, such as commercial or utility-scale projects, where a large number of panels are connected in parallel. They can handle high power capacities and are highly efficient. In contrast, string inverters are commonly used in smaller residential or small-scale commercial installations, where a smaller number of panels are connected in series. They offer flexibility in system design and can be easily expanded or modified. Another difference is the impact of shading or module mismatch. In a string inverter system, if one panel in a string is shaded or experiences reduced performance, it can affect the overall output of the entire string. This is because all panels in a string are connected in series, and the output is limited by the weakest performing panel. In a central inverter system, however, the impact of shading or module mismatch is minimized as each string operates independently, allowing for better performance optimization. Additionally, maintenance and monitoring differ between the two types. Central inverters are easier to access and maintain as they are typically installed in a dedicated location. They also offer advanced monitoring capabilities, allowing for centralized tracking of system performance. String inverters, being installed close to the panels, require more individual maintenance and monitoring efforts. Both central and string inverters have their own advantages and disadvantages, and the choice between them depends on factors such as project size, system design, shading conditions, and budget.
Q:What is the role of a galvanic isolation circuit in a solar inverter?
The role of a galvanic isolation circuit in a solar inverter is to provide a barrier of protection between the high-voltage DC input from the solar panels and the low-voltage AC output. It ensures electrical safety by isolating the input and output circuits, preventing any direct electrical connection or potential leakage current. This isolation helps to prevent electrical faults, ground loops, and potential damage to the solar inverter or connected equipment, while also reducing the risk of electrical shock.

1. Manufacturer Overview

Location
Year Established
Annual Output Value
Main Markets
Company Certifications

2. Manufacturer Certificates

a) Certification Name  
Range  
Reference  
Validity Period  

3. Manufacturer Capability

a)Trade Capacity  
Nearest Port
Export Percentage
No.of Employees in Trade Department
Language Spoken:
b)Factory Information  
Factory Size:
No. of Production Lines
Contract Manufacturing
Product Price Range

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

Hot products


Hot Searches

Related keywords