• Grade JIS G3322-CGLCC Galvanized Steel Coil System 1
  • Grade JIS G3322-CGLCC Galvanized Steel Coil System 2
  • Grade JIS G3322-CGLCC Galvanized Steel Coil System 3
  • Grade JIS G3322-CGLCC Galvanized Steel Coil System 4
  • Grade JIS G3322-CGLCC Galvanized Steel Coil System 5
  • Grade JIS G3322-CGLCC Galvanized Steel Coil System 6
Grade JIS G3322-CGLCC Galvanized Steel Coil

Grade JIS G3322-CGLCC Galvanized Steel Coil

Ref Price:
get latest price
Loading Port:
Tianjin
Payment Terms:
TT OR LC
Min Order Qty:
3 m.t.
Supply Capability:
10000 m.t./month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Specification

Type:
Carbon Steel,Spring Steel,Bearing Steel,Gear Steel,Deformed Steel,Stainless Steel,Alloy Steel
Shape:
Steel Coil,Steel Sheet,Steel Wire Rod,Steel Flat Bar,Steel Square Bar,Steel Angle,Steel Round Bar,Steel Billets
Technique:
Hot Rolled,Cold Rolled,Cold Drawn,ERW,Forged,Saw,Extruded,EFW,Spring
Surface Treatment:
Galvanized,Coated,Copper Coated,Color Coated,Oiled,Dry,Chromed Passivation,Polished,Bright,Black,PVDF Coated
Certification:
ISO,SGS,BV,IBR,RoHS,CE,API,BSI,UL
Thickness:
0.13-5.0mm
Width:
600-1570mm
Length:
in coils
Outer Diameter:
in coils
Net Weight:
10m.t.
Packaging:
seaworthy packaging

Grade JIS G3322-CGLCC Galvanized Steel Coil

 Specification of JIS G3322-CGLCC Galvanized Steel Coil

1. Galvanized Steel Coil    

    (1) Width: 600-1570mm

    (2) Thickness: 0.13-5.0mm

    (3) Grade: JIS G3302-SGCC-SGC570, SGCH (full hard-G550), SGHC-SGH540

                          EN10346-DX51D+Z, DX53D+Z, S250GD-S550GD

                         ASTM A653-CS-B, SS255-SS550

    (4) Zinc Coating: Z40g/m2~Z500g/m2 (both side total coating thickness)

2. Galvalume Steel Coil 

    (1) Width: 600~1500mm

    (2) Thickness: 0.15~2.30mm

    (3) Grade: JIS G3321-SGLCC, SGLC400-570, (G550)

                       EN10346-DX51D+AZ, DX53D+AZ, S250-S550

                      ASTM A792M CS-B, SS255-SS550

    (4) AZ Coating: AZ50~AZ185g/m2

3. Prepainted Galvanized Steel Coil (PPGI) 

    (1) Width: 600~1250mm

    (2) Thickness: 0.19~1.50mm

    (3) Grade: JIS G3312-CGCC, CGC340-570, (G550)

                      ASTM A755M CS-B, SS255-SS550

    (4) Zinc Coating: Z40g/m2~Z500g/m2 (both side total coating thickness)

4. Prepainted Galvanized Steel Coil (PPGL)

    (1) Width: 600~1250mm

    (2) Thickness: 0.20~1.50mm

    (3) Grade: JIS G3322-CGLCC, CGLC340-570, (G550)

                      ASTM A755M CS-B, SS255-SS550

    (4) AZ Coating: AZ50~AZ185g/m2 (both side total coating thickness)

5. Cold Rolled Steel Coil (Soft) (for further information, pls click the product name)

    (1) Width: 600~1570mm

    (2) Thickness: 0.13~2.50mm

    (3) Grade: JIS G3141-SPCC-SD, SPCD-SD, SPEC-SD

                      JIS G3135-SPFC 340/390/440

                      EN10130-DC01, DC03, DC04

                      SAE1006, SAE1008

                      ASTM A424-TypeⅡ

6. Cold Rolled Steel Coil (Full Hard) (for further information, pls click the product name)

    (1) Width: 600~1570mm

    (2) Thickness: 0.13~2.50mm

    (3) Grade: JIS G3141-SPCC-1B, SPCC-1D

7. Hot Rolled Steel Coil 

    (1) Width: 1000~1524mm

    (2) Thickness: 1.20~16.5mm, other thickness can be negotiation

    (3) Grade: JIS G3101-SS400, JIS G3132-SPHT1/2/3, ASTM A36, Q195, Q235 etc.

 

Company Introduction of the Grade JIS G3322-CGLCC Galvanized Steel Coil

CNBM International Corporation is the most import and export platform of CNBM group(China National Building Material Group Corporation) ,which is a state-owned enterprise, ranked in 270th of Fortune Global 500 in 2015.

With its advantages, CNBM International are mainly concentrate on Cement, Glass, Iron and Steel, Ceramics industries and devotes herself for supplying high quality series of refractories as well as technical consultancies and logistics solution.

Grade JIS G3322-CGLCC Galvanized Steel Coil

Grade JIS G3322-CGLCC Galvanized Steel Coil

 

Packaging & Delivery of the Grade JIS G3322-CGLCC Galvanized Steel Coil

Packaging Detail

Sea worthy packing /as per customer's packing instruction

Delivery Detail

15 ~ 40 days after receiving the deposit

 

Products Show:

Grade JIS G3322-CGLCC Galvanized Steel Coil

FAQ:   

Are you a trading company or manufacturer?

Manufacturer

What’s the MOQ?

3 metric ton

What’s your delivery time? 

15-35 days after downpayment received

Do you Accept OEM service?

Yes

what’s your delivery terms?

FOB/CFR/CIF

What's the Payment Terms?

30% as deposit,70% before shipment by T/T

Western Union acceptable for small amount.

L/C acceptable for large amount.

Scrow ,Paybal,Alipay are also ok

Why  choose  us?

Chose happens because of quality, then price, We can give you both.

Additionally, we can also offer professional products inquiry, products knowledge train (for agents), smooth goods delivery, excellent customer solution proposals.

What's your available port of Shipment?

Main Port, China

What’s your featured  services?

Our service formula: good quality+ good price+ good service=customer's trust

 

Where are your Market?

Covering more than 160 countries in the world

 

Q: What are the common applications of stainless special steel?
Stainless special steel, which is also known as stainless steel, possesses unique properties and characteristics that enable it to be extensively utilized in a wide range of applications. Some of the common uses of stainless special steel include: 1. In the construction industry, stainless steel is favored by architects and engineers for building facades, roofing, and structural components due to its high strength, corrosion resistance, and aesthetic appeal. 2. Within the automotive industry, stainless steel is extensively employed in the manufacturing of exhaust systems, mufflers, fuel tanks, and decorative trims, thanks to its resistance to corrosion, heat, and impact. 3. The aerospace industry utilizes stainless steel for the production of aircraft components such as frames, engine parts, and landing gear. This is due to stainless steel's exceptional strength-to-weight ratio, high-temperature resistance, and corrosion resistance, which make it suitable for the demanding conditions of aerospace applications. 4. In the medical industry, stainless steel is widely used for the manufacture of surgical instruments, implants, and medical equipment. Its biocompatibility, corrosion resistance, and ease of sterilization make it an ideal material for critical medical applications. 5. The food processing industry relies heavily on stainless steel for the manufacturing of storage tanks, pipes, and containers. This is because stainless steel possesses hygienic properties, corrosion resistance, and is easy to clean, ensuring the integrity and safety of food products. 6. The chemical industry makes extensive use of stainless steel due to its resistance to corrosion from various chemicals and acids. It is employed in the production of storage tanks, pipes, valves, and other equipment required in chemical processing plants. 7. In the marine industry, stainless steel is widely employed for manufacturing boat fittings, propellers, and underwater structures. Its resistance to corrosion from saltwater and harsh marine environments make it an excellent choice for marine applications. 8. The energy industry utilizes stainless steel in the manufacturing of pipelines, valves, and heat exchangers. Its high-temperature resistance, corrosion resistance, and durability make it suitable for use in power plants, oil refineries, and nuclear facilities. In summary, stainless special steel is a versatile material with exceptional properties, including corrosion resistance, strength, durability, and aesthetic appeal. This versatility allows it to find applications in various industries.
Q: How does special steel contribute to the flexibility of products?
Special steel contributes to the flexibility of products by providing enhanced strength, durability, and resistance to corrosion. Its unique properties allow manufacturers to design and produce products that can withstand high stress, extreme temperatures, and harsh environments. This flexibility enables the creation of a wide range of products that can be used in diverse industries, including automotive, aerospace, construction, and manufacturing.
Q: How does precipitation-hardening steel achieve high strength through heat treatment?
Precipitation-hardening steel achieves high strength through heat treatment by a process called aging. After the steel is initially heat-treated, it is cooled quickly to form a supersaturated solid solution. This solution contains a high concentration of alloying elements. When the steel is reheated to a lower temperature, these alloying elements precipitate out, forming small particles within the steel matrix. These precipitates act as obstacles to dislocation movement, which in turn increases the strength of the steel. The size, distribution, and density of these precipitates can be controlled through the heat treatment process, allowing for the desired strength and hardness to be achieved in the final product.
Q: What are the typical mechanical properties of special steel?
The mechanical properties of special steel can vary depending on its specific grade and composition. However, there are certain general characteristics that can be anticipated. Special steels are often designed to have enhanced properties compared to standard carbon steels, which makes them suitable for specific applications that require superior strength, hardness, or resistance to wear and corrosion. One important mechanical property of special steel is its high tensile strength. These steels are typically engineered to have higher strength levels than standard steels. As a result, they can withstand heavy loads and stresses without deforming or failing, making them ideal for industries like construction, automotive, and aerospace where structural integrity is crucial. Special steels also demonstrate excellent hardness, which measures a material's ability to resist permanent indentation or scratching. This property is often achieved through the addition of alloying elements and heat treatment processes that enhance the steel's ability to resist wear and abrasion. Consequently, special steels are commonly used in tools, cutting equipment, and machinery components subjected to severe wear conditions. Furthermore, special steel alloys can possess exceptional toughness, which refers to the material's ability to absorb energy and resist fracture under impact or sudden loading. This is particularly important in applications where impact resistance is vital, such as the manufacturing of heavy-duty machinery or structures subjected to dynamic loads. Additionally, special steels may exhibit improved corrosion resistance compared to standard steels. This is achieved by incorporating alloying elements like chromium, nickel, or molybdenum, which create a protective oxide layer on the steel's surface, preventing or slowing down the process of corrosion. Industries dealing with corrosive environments, such as marine, oil and gas, and chemical processing, highly value this property. In summary, special steel possesses typical mechanical properties such as high tensile strength, excellent hardness, exceptional toughness, and improved corrosion resistance. These properties allow special steels to excel in various applications where superior performance is required, making them essential in numerous industries worldwide.
Q: What are the different surface protection methods used for special steel?
The different surface protection methods used for special steel include galvanizing, painting, powder coating, and electroplating. These methods are employed to prevent corrosion, enhance durability, and improve appearance. Galvanizing involves applying a layer of zinc to the steel surface, creating a protective barrier. Painting involves applying a coat of paint, acting as a protective layer against environmental factors. Powder coating is a process where a dry powder is applied to the steel surface and then heated to form a durable and protective layer. Electroplating involves depositing a thin layer of metal onto the steel surface through an electrolytic process, providing corrosion resistance and aesthetic appeal.
Q: What are the different methods of preventing intergranular corrosion in special steel?
Various techniques are available for preventing intergranular corrosion in special steel. 1. Heat Treatment: A highly effective approach involves subjecting the steel to solution annealing, a heat treatment process. This method entails heating the steel to a high temperature and rapidly cooling it. By doing so, any precipitates or carbides that may have formed along the grain boundaries are dissolved, thereby reducing the risk of intergranular corrosion. 2. Alloying: Another strategy is to introduce specific alloying elements into the steel composition. For instance, the addition of elements such as chromium and molybdenum can enhance the steel's resistance to intergranular corrosion. These alloying elements create a protective oxide layer on the surface, preventing corrosion along the grain boundaries. 3. Passivation: Passivation involves treating the steel surface with chemicals that establish a protective layer. This layer acts as a barrier, safeguarding the grain boundaries from the corrosive environment. Common passivation techniques include acid pickling and electrochemical methods. 4. Sensitization Control: Particular attention must be given to controlling the sensitization process. Sensitization occurs when the steel is exposed to high temperatures for an extended period, resulting in the precipitation of chromium carbides along the grain boundaries and rendering the steel vulnerable to intergranular corrosion. By carefully controlling the heating and cooling rates during processing, sensitization can be minimized or prevented. 5. Corrosion Inhibitors: Another option is the utilization of corrosion inhibitors, which are chemicals that can be applied to the steel surface to protect it from corrosion. These inhibitors form a protective film on the surface, preventing corrosive agents from attacking the grain boundaries. It is important to consider that the choice of method depends on the specific type of special steel and its intended application. Selecting the most suitable approach requires a comprehensive understanding of the steel's composition, processing conditions, and the expected corrosive environment.
Q: How does special steel contribute to the automotive material recycling?
Special steel contributes to automotive material recycling in several ways. Firstly, special steel is highly durable and strong, making it ideal for use in critical automotive components such as engine parts, chassis, and suspension systems. This durability ensures that these components have a longer lifespan, reducing the frequency of replacements and minimizing waste. Additionally, special steel is highly recyclable. It can be easily melted down and reused without losing its inherent properties. This makes it an excellent choice for automakers looking to incorporate recycled materials into their production processes. By utilizing recycled special steel, the automotive industry can reduce the demand for virgin raw materials, conserve energy, and decrease greenhouse gas emissions associated with mining and production. Moreover, special steel's high strength-to-weight ratio allows for the production of lighter vehicles, enhancing fuel efficiency and reducing carbon emissions during the vehicle's operational phase. This aspect of special steel contributes to the overall sustainability of the automotive industry and supports the goals of a circular economy by promoting resource efficiency and waste reduction. Overall, special steel plays a vital role in automotive material recycling by enabling durable and long-lasting components, promoting the use of recycled materials, and contributing to the development of more sustainable and environmentally friendly vehicles.
Q: What are the different methods of preventing stress corrosion cracking in special steel?
To prevent stress corrosion cracking in special steel, various approaches can be implemented: 1. Optimal steel alloy selection is pivotal, as it enhances resistance to stress corrosion cracking. Alloys like stainless steel, duplex stainless steel, and nickel-based alloys are renowned for their effectiveness against this type of corrosion. 2. Implementing surface treatments such as passivation or electroplating forms a protective layer on the steel surface. This serves to prevent the penetration of corrosive substances and diminishes the likelihood of stress corrosion cracking. 3. Employing stress relieving through heat treatment methods aids in reducing residual stresses within the steel, which can contribute to stress corrosion cracking. This procedure involves heating the steel to a specific temperature and gradually cooling it, effectively minimizing residual stresses. 4. The use of corrosion inhibitors aids in safeguarding the steel from corrosive environments. These inhibitors can be introduced into the system or applied as a coating on the steel surface, creating a barrier that prevents corrosive substances from reaching the steel. 5. Environmental control plays a crucial role in stress corrosion cracking prevention. Monitoring and regulating factors such as temperature, humidity, and the presence of corrosive substances are essential in minimizing the risk. 6. Incorporating cathodic protection techniques can effectively prevent stress corrosion cracking. This involves applying sacrificial or impressed current to the steel, acting as a cathode and shielding the steel from corrosion. 7. Proper design considerations are paramount in preventing stress corrosion cracking. Factors such as avoiding sharp edges, minimizing stress concentrations, and ensuring adequate drainage to prevent the accumulation of corrosive substances significantly reduce the risk. By employing a combination of these methods, stress corrosion cracking in special steel can be effectively prevented, ensuring the longevity and integrity of the structure.
Q: How does the heat treatment process affect special steel?
The heat treatment process can significantly impact the properties of special steel. It involves heating the steel to a specific temperature and then cooling it in different ways to achieve desired hardness, strength, and other mechanical properties. By carefully controlling the heating and cooling rates, the heat treatment process can alter the microstructure of the steel, allowing for the formation of various phases and structures. This can result in improved hardness, toughness, and wear resistance, making the special steel more suitable for specific applications. Additionally, heat treatment can also relieve internal stresses and improve dimensional stability, enhancing the overall performance and durability of the special steel.
Q: What are the different methods of non-destructive testing for special steel?
There are several methods of non-destructive testing (NDT) for special steel, including magnetic particle testing, ultrasonic testing, radiographic testing, eddy current testing, and liquid penetrant testing. These techniques allow for the detection of defects or abnormalities in the material without causing any damage to the steel. Each method has its own advantages and limitations, and the choice of method depends on the specific requirements and characteristics of the steel being tested.

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

Hot products


Hot Searches

Related keywords