• FC 99% Calciend Petroleum Coke as Injection Carbon System 1
  • FC 99% Calciend Petroleum Coke as Injection Carbon System 2
FC 99% Calciend Petroleum Coke as Injection Carbon

FC 99% Calciend Petroleum Coke as Injection Carbon

Ref Price:
get latest price
Loading Port:
Tianjin
Payment Terms:
TT OR LC
Min Order Qty:
20.1
Supply Capability:
2010 m.t./month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Brief introduction

Calcined Petroleum Coke comes from delayed coke which extracted from oil refinery. Although Calcined Petroleum Coke contains a little bit higher level of sulfur and nitrogen than pitch coke, the price advantage still makes it widely used during steel-making and founding as a kind of carbon additive/carburant. It is playing more and more important role in the industry.

BaoSteel is world famous organization. This calcined petroleum coke's raw material is from Bao Steel, which has great quality guarantee. Bao Steel also named this coke as Pitch Coke.

 

Features

Our product has follwing advantages:

The morphology, chemistry and crystallinity of recarburisers

have a major impact on the overall casting cost. The combined

application and cost benefits, which are derived through the

use of Desulco, enable foundries to manufacture castings in a

highly cost effective manner.

reduces
 Recarburiser consumption
 Power consumption
 Inoculant consumption
 MgFeSi consumption
 Furnace refractory wear
 Scrap rate
 Tap to tap time
 Slag inclusions risk
 Chill

 

 increases
 Casting microstructure
 Productivity
 Process consistency

 

Specifications

Products

CPC

F.C.%

98.5MIN 

98.5MIN 

98MIN 

ASH %

0.8MAX

0.8MAX

1MAX

V.M.%

0.7 MAX

0.7 MAX

1 MAX

SULFUR %

0. 5MAX

0. 7MAX

1MAX

MOISTURE %

0.5MAX

0.5MAX

1MAX

 

Pictures

FC 99% Calciend Petroleum Coke as Injection Carbon

FC 99% Calciend Petroleum Coke as Injection Carbon

FC 99% Calciend Petroleum Coke as Injection Carbon

FC 99% Calciend Petroleum Coke as Injection Carbon

FAQ

1 What is the package?

In jumbo bag with/without pallet

2 What is the delivery time?

25 days after receiving the workable LC or down payment

3 What is the payment term?

T/T, L/C,D/P,D/A

 

Q: Why carbon 14 can be used to measure the age of matter?
Libby believes that when plants alive, because continue to carry out photosynthesis, carbon dioxide (including carbon 12 and carbon 14) continue to enter the plant, plant eaten animal, carbon 14 and entering into the body of the animal. The animals and plants 14 carbon content but is constantly changing, Once the plant or animal died, the plant will not absorb carbon dioxide in the atmosphere, the animal will no longer eat plants.
Q: What is the difference in carbon content of low carbon steel, medium carbon steel and high carbon steel?
The carbon content of medium carbon steel (AISI1029 to 1053) is 0.25% to 0.55%, manganese content is 0.30% to 1%, phosphorus content is not more than 0.04%, sulfur content is not more than 0.05%.
Q: How does carbon contribute to air pollution?
Carbon contributes to air pollution primarily through the combustion of fossil fuels. When carbon-based fuels such as coal, oil, and natural gas are burned for energy, they release carbon dioxide (CO2) into the atmosphere, which is a greenhouse gas that contributes to global warming and climate change. Additionally, incomplete combustion of these fuels can produce other pollutants such as carbon monoxide (CO), volatile organic compounds (VOCs), and particulate matter, which all have detrimental effects on air quality and human health.
Q: What is the role of carbon in photosynthesis?
The role of carbon in photosynthesis is essential. Carbon dioxide (CO2) is one of the primary reactants in the process of photosynthesis. During photosynthesis, plants and other photosynthetic organisms use carbon dioxide along with water and sunlight energy to produce glucose (a simple sugar). This glucose serves as the main source of energy for the plant's growth and development. Carbon dioxide enters the leaf through tiny pores called stomata and diffuses into the chloroplasts, where photosynthesis takes place. Inside the chloroplasts, carbon dioxide combines with water in the presence of sunlight and chlorophyll to undergo a series of chemical reactions known as the Calvin cycle or the dark reactions. In this cycle, glucose is synthesized and stored as a source of energy for the plant. The carbon atoms from carbon dioxide are the building blocks of glucose and other organic compounds formed during photosynthesis. Through a complex series of enzymatic reactions, carbon dioxide is converted into carbohydrates, lipids, proteins, and nucleic acids, which are essential for the plant's growth and survival. Photosynthesis not only helps in the production of glucose but also plays a significant role in the global carbon cycle. It is the process through which plants remove carbon dioxide from the atmosphere and release oxygen as a byproduct. This helps in regulating the levels of carbon dioxide in the atmosphere, mitigating climate change, and maintaining the oxygen balance necessary for all living organisms. In summary, carbon plays a crucial role in photosynthesis by serving as the raw material for the synthesis of glucose and other organic compounds. It is through this process that plants convert carbon dioxide into energy-rich molecules, contributing to their growth, survival, and the overall balance of carbon in the Earth's atmosphere.
Q: Just come out to work, do activated carbon, often see carbon materials and carbon materials, I do not know what the difference, trouble you!
Carbon refers to elements. Carbon materials usually refer to materials that contain carbon and are the main bodyCarbon is a carbon containing substance of no composition and property consisting of carbon elements
Q: How are carbon nanotubes used in various industries?
Carbon nanotubes have found applications in numerous industries due to their incredible versatility. With their unique properties, they are ideal for a wide range of uses. In the electronics industry, carbon nanotubes enhance the performance of electronic devices. They act as conductive additives in polymers, improving electrical conductivity. This makes them suitable for flexible displays, touchscreens, and wearable electronics. Moreover, carbon nanotubes serve as field emitters in flat-panel displays, resulting in brighter and more energy-efficient screens. The aerospace and automotive industries benefit from carbon nanotubes as well. Their exceptional strength and low weight make them perfect for manufacturing lightweight and durable composites for aircraft and automobile parts. These composites offer improved fuel efficiency, increased load-bearing capacity, and enhanced resistance to impact and corrosion. Consequently, they are crucial in the development of next-generation vehicles and aircraft. Carbon nanotubes have also made significant contributions to the energy sector. They have been instrumental in developing more efficient and durable batteries and supercapacitors. With their high surface area and excellent electrical conductivity, carbon nanotubes enable faster charging and discharging rates, leading to improved energy storage and longer battery life. Additionally, they are being explored as catalysts for fuel cells, promising a more sustainable and efficient power source for the clean energy industry. The medical and healthcare industries utilize carbon nanotubes in various applications as well. They act as drug delivery vehicles, allowing targeted delivery of medications to specific cells or tissues. This enhances treatment efficacy and reduces side effects. Furthermore, carbon nanotubes have unique optical properties that can enhance the sensitivity and resolution of medical imaging techniques like MRI and CT scans, potentially advancing medical imaging capabilities. Carbon nanotubes also find applications in the construction industry, where they reinforce concrete and enhance its mechanical properties. By adding carbon nanotubes to concrete, it becomes stronger, more durable, and resistant to cracking and corrosion. This leads to safer and longer-lasting infrastructure, such as bridges and buildings. In summary, carbon nanotubes have revolutionized various industries by offering exceptional properties, including high strength, electrical conductivity, and light weight. From electronics to aerospace, energy to healthcare, and construction to automotive, carbon nanotubes have found applications in a multitude of sectors, enabling the development of innovative and advanced technologies.
Q: How does carbon affect the preservation of historical artifacts?
Carbon can negatively affect the preservation of historical artifacts by accelerating their deterioration through processes like oxidation, acidification, and microbial growth.
Q: How to distinguish carbon rods to identify carbon fishing rods?
I'm also waiting to learn! It seems all very busy, the masters are not on-line
Q: What is carbon capture and storage?
The aim of carbon capture and storage (CCS) technology is to lessen carbon dioxide (CO2) emissions from major sources like industrial processes, power plants, and others. It works by capturing CO2 emissions before they are released into the atmosphere and then storing them securely underground. To capture carbon, specialized equipment is typically used to trap CO2 from flue gases or industrial processes. The captured CO2 is then compressed and transported through pipelines or ships to a suitable storage site located deep underground. These storage sites can include depleted oil and gas fields, saline aquifers, or deep coal seams. The storage process ensures long-term containment of CO2 and reduces the risk of leakage. This is achieved by monitoring the storage site for signs of leakage, maintaining the integrity of the storage infrastructure, and selecting suitable sites with geological features that aid in long-term CO2 containment. Carbon capture and storage has the potential to greatly reduce CO2 emissions and contribute to climate change mitigation. By capturing and storing CO2 instead of releasing it into the atmosphere, industries can continue using fossil fuels while minimizing their environmental impact. This is particularly beneficial for industries that are challenging to decarbonize, such as cement production, steel manufacturing, and natural gas power plants. Despite its promise, the widespread implementation of carbon capture and storage faces challenges and limitations. One significant challenge is the high cost associated with establishing CCS infrastructure and operations. Additionally, finding suitable storage sites and addressing public concerns about the safety and environmental impact of underground CO2 injection can pose significant obstacles. Nevertheless, carbon capture and storage is considered an essential tool in the battle against climate change. It can play a crucial role in achieving global emission reduction goals and transitioning to a low-carbon economy. With advancing technology and decreasing costs, the widespread adoption of carbon capture and storage may become increasingly feasible and necessary.
Q: What is carbon monoxide poisoning?
High levels of carbon monoxide gas can be extremely dangerous, potentially causing fatal carbon monoxide poisoning. This condition occurs when an individual breathes in or comes into contact with this gas. Carbon monoxide, which is produced from burning carbon-based fuels like gasoline, natural gas, coal, and wood, is invisible, odorless, and tasteless. When carbon monoxide is inhaled, it enters the bloodstream and attaches itself to hemoglobin, the molecule responsible for carrying oxygen throughout the body. This attachment prevents oxygen from reaching vital organs and tissues, leading to oxygen deprivation or hypoxia. The symptoms of carbon monoxide poisoning can vary, depending on the duration and level of exposure. However, they often resemble flu-like symptoms, including headaches, dizziness, weakness, nausea, vomiting, confusion, and loss of consciousness. Prolonged exposure to high levels of carbon monoxide can cause severe brain damage, organ failure, and even death. If you suspect carbon monoxide poisoning, it is crucial to act swiftly. Get away from the source of exposure, seek fresh air, and contact emergency services for medical assistance. Moreover, it is essential to identify and resolve the source of carbon monoxide, such as faulty heating systems, blocked chimneys, or malfunctioning appliances, to prevent further exposure and ensure a safe environment. To avoid carbon monoxide poisoning, prevention is key. Regularly maintain and inspect fuel-burning appliances, install carbon monoxide detectors in homes and buildings, and ensure adequate ventilation to minimize the risk of exposure. Educating yourself and others about the dangers of carbon monoxide and the necessary precautions can save lives and protect individuals from this silent killer.

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

Hot products


Hot Searches