FC 92% Carbon additive
- Loading Port:
- China Main Port
- Payment Terms:
- TT OR LC
- Min Order Qty:
- -
- Supply Capability:
- -
OKorder Service Pledge
OKorder Financial Service
You Might Also Like
Package:
in MT bags
in 25KG bags
or as buyer's request
Specifications
Calcined Anthracite
Fixed carbon: 90%-95%
S: 0.5% max
Size: 0-3. 3-5.3-15 or as request
Calcined Anthracite is produced using the best Anthracite-Taixi Anthracite with low S and P, It is widely used in steel making and casting, Chemical and some other fields.
General Specification of Calcined Anthracite:
PARAMETER UNIT GUARANTEE VALUE | |||||
F.C.% | 95MIN | 94MIN | 93MIN | 92MIN | 90MIN |
ASH % | 4MAX | 5MAX | 6MAX | 7MAX | 8MAX |
V.M.% | 1 MAX | 1MAX | 1.5MAX | 1.5MAX | 1.5MAX |
SULFUR % | 0.5MAX | 0.5MAX | 0.5MAX | 0.5MAX | 0.5MAX |
MOISTURE % | 0.5MAX | 0.5MAX | 0.5MAX | 0.5MAX | 0.5MAX |
Size can be adjusted based on buyer's request.
Pictures of Calcined Anthracite:
- Q:What's the difference between an alkaline cell and a carbon cell?
- Carbon batteries and alkaline batteries are dry cells, but only in accordance with the quality of different materials and divided into two categories:2. The battery should be full carbon carbon zinc batteries (because it is the general level is the carbon rod electrode is the zinc skin), also known as zinc manganese battery, is currently the most common dry battery, it has the characteristics of low price and safe and reliable use, based on the consideration of environmental factors, because the ingredients still contain cadmium. It must be recovered, so as to avoid damage to the environment of the earth. (so we usually use the carbon rod, the negative electrode is zinc skin, the battery should be recycled)
- Q:Will long-term use of carbon alloy chopsticks cause cancer?
- The chopsticks are washed with water for a long time, and the water content is especially high. The chopsticks are placed in the non ventilated place for a long time, and the chances of deterioration of the chopsticks are improved." Huang Yahui said, especially the moldy chopsticks, may be contaminated by aflatoxin. It is understood that aflatoxin is the 1 class of carcinogens, is a highly toxic highly toxic substances, human and animal liver tissue will have a damaging effect, can lead to serious liver cancer or even death. Huang Yahui warned that the public should be weekly chopsticks into boiling water after half an hour, placed in the air to air dry before use, it can achieve the disinfection effect, and can effectively and conveniently remove mildew in chopsticks. In addition, it is best to use half a year to replace the new chopsticks, so you don't have to worry too much. "The selection of chopsticks is also very exquisite."." Huang Yahui said, "the ideal chopsticks are bamboo chopsticks and non staining wooden chopsticks.". After the dyed or painted wood, paint and stain will enter the body with food. When in use, especially the stain in heavy metals, benzene and other harmful substances, can cause gastrointestinal inflammation, ulceration, erosion, serious can cause cancer.
- Q:How does carbon impact the structure and function of ecosystems?
- Carbon, as a fundamental element, plays a crucial role in shaping the structure and function of ecosystems. It serves as a building block of life, found in all living organisms, and continuously cycles between the atmosphere, living organisms, and the Earth's surface. The impact of carbon on ecosystems is diverse, both directly and indirectly. To begin with, carbon is a vital component of organic matter, including plants, animals, and decomposing organic materials. It provides the necessary energy and nutrients for the growth and development of organisms. Through the process of photosynthesis, plants absorb carbon dioxide from the atmosphere and convert it into organic compounds, primarily carbohydrates. These compounds serve as a source of energy and building materials for other organisms, forming the basis of the food chain. As a result, carbon is essential for sustaining the productivity and biodiversity of organisms within ecosystems, as it contributes to their structure and functioning. Additionally, carbon influences the physical structure of ecosystems. In terrestrial ecosystems, carbon is stored in vegetation and soils, creating carbon sinks. Forests, for example, store significant amounts of carbon in their biomass and soils. This plays a crucial role in mitigating climate change by absorbing and sequestering carbon dioxide. However, the loss of these ecosystems, due to deforestation or degradation, can release large amounts of carbon back into the atmosphere. This contributes to the greenhouse effect and climate change. In marine ecosystems, carbon is stored in the form of dissolved inorganic carbon, which can affect ocean acidity. The increasing concentration of carbon dioxide in the atmosphere leads to ocean acidification, impacting the growth and survival of marine organisms, particularly those with calcium carbonate shells or skeletons, such as corals and mollusks. Furthermore, carbon influences the functioning of ecosystems through its role in nutrient cycling. Decomposition, the process of breaking down and recycling organic matter, is largely driven by microorganisms that respire carbon dioxide. This process releases essential nutrients, such as nitrogen, phosphorus, and sulfur, back into the soil, making them available for uptake by plants. Nutrient cycling is crucial for maintaining the productivity and nutrient balance within ecosystems. Changes in the availability of carbon can affect the rates of decomposition and nutrient cycling, which, in turn, impact the structure and functioning of ecosystems. In conclusion, carbon is a fundamental element that significantly impacts the structure and function of ecosystems. Its involvement in energy transfer, organic matter formation, nutrient cycling, and climate regulation makes it essential for the sustainability and functioning of all living organisms within an ecosystem. To ensure the health and resilience of ecosystems in the face of environmental changes, understanding and managing carbon dynamics is crucial.
- Q:Can carbon in barbecue cause cancer? Can carbonated food cause cancer?
- At the same time, there is another carcinogen in the barbecue food - nitrosamines.Why not eat barbecue food, mainly because of its high fat content, not health, but also not easy to digest, in addition, because the stall in the barbecue grill to add spices and other things, therefore, the body fat intake will cause degeneration in vivo, which leads to the occurrence of cancer.
- Q:How does carbon affect the formation of hurricanes?
- Carbon does not directly affect the formation of hurricanes. The formation of hurricanes is primarily driven by warm ocean temperatures, high humidity, and the Coriolis effect. However, carbon emissions and the subsequent increase in greenhouse gases have been linked to climate change, which indirectly impacts hurricane formation and intensity. Climate change, caused by the accumulation of carbon dioxide and other greenhouse gases in the atmosphere, is leading to rising global temperatures. Warmer ocean temperatures provide more energy to hurricanes, making them potentially more intense and destructive. Additionally, climate change can alter wind patterns and atmospheric circulation, which can influence the development and movement of hurricanes. Moreover, as carbon dioxide dissolves into seawater, it can lead to ocean acidification, which can harm marine life and disrupt the delicate balance of ecosystems. This disruption can have indirect effects on hurricane formation, as healthy ecosystems play a crucial role in regulating the climate and maintaining a stable environment. While carbon emissions themselves do not directly impact the formation of hurricanes, their contribution to climate change and subsequent effects on the Earth's systems can have significant consequences for the frequency, intensity, and behavior of hurricanes. It is important to reduce carbon emissions and mitigate climate change to lessen the future impacts of hurricanes and protect vulnerable coastal regions.
- Q:How does carbon cycle through the environment?
- The carbon cycle is a natural process through which carbon is constantly recycled and exchanged between the atmosphere, land, and ocean. It begins with carbon dioxide (CO2) being absorbed by plants through photosynthesis, converting it into organic compounds. These plants are then consumed by animals, transferring carbon up the food chain. When plants and animals die, their organic matter decomposes, releasing carbon back into the atmosphere as CO2. Additionally, some carbon is stored in the form of fossil fuels, such as coal and oil, which are released through human activities like burning fossil fuels and deforestation. Ultimately, carbon is continually cycled through the environment, balancing the levels of CO2 in the atmosphere and supporting life on Earth.
- Q:What is the melting point of carbon?
- The melting point of carbon is approximately 3550 degrees Celsius (6422 degrees Fahrenheit).
- Q:Rod box material, there is a kind of material called carbon fiber, who knows this material is good?
- Very good, carbon fiber is made of organic fiber after a series of heat treatment into, inorganic fiber with high performance carbon content is higher than 90%, is a new material with excellent mechanical properties, the intrinsic properties of natural carbon material with, and both the textile fiber soft processing, is a new generation of fiber. Carbon fiber is a new dual-use material for military and civilian use. It is the key material of technology intensive and politically sensitive. It is the only material that does not drop in the high temperature inert environment above 2000 degrees celsius. Carbon fiber steel accounted for less than 1/4, the tensile strength of composite is generally above 3500Mpa, is 7-9 times that of steel, carbon fiber has superior corrosion resistance, it can also be safe and sound in the dissolution of gold and platinum "aqua".
- Q:What are the benefits of carbon-neutral technologies?
- Carbon-neutral technologies have numerous benefits, including the reduction of greenhouse gas emissions, mitigating climate change, and improving air quality. They also promote energy efficiency, stimulate innovation and job creation in the clean energy sector, and enhance energy security by reducing reliance on fossil fuels. Furthermore, carbon-neutral technologies contribute to sustainable development, foster international cooperation, and create a healthier and more sustainable future for all.
- Q:What is the carbon footprint of different activities?
- The release of greenhouse gas emissions, specifically carbon dioxide (CO2), into the atmosphere as a consequence of conducting various activities defines the carbon footprint. It gauges the impact exerted by these activities on climate change. Numerous activities contribute to our carbon footprint, encompassing transportation, energy utilization, food production, and waste management. The carbon footprint associated with each activity can significantly differ depending on factors like energy source type, technological efficiency, and individual choices. Transportation serves as a major contributor to carbon emissions, with cars, planes, and ships serving as primary sources. The employment of fossil fuels in these modes of transportation results in CO2 emissions. The carbon footprint of transportation is determined by vehicle type, fuel efficiency, and travel distance. Energy utilization stands as another significant contributor, particularly in the context of electricity generation. The burning of fossil fuels, such as coal and natural gas, for electricity production leads to the release of CO2. However, renewable energy sources such as wind, solar, and hydroelectric power exhibit a lower carbon footprint as they do not emit greenhouse gases during operation. Food production, often disregarded, possesses a substantial carbon footprint. The agricultural practices involved in cultivating, processing, packaging, and transporting food contribute to emissions. Additionally, livestock farming, notably beef and lamb, generates significant amounts of methane, a potent greenhouse gas. Waste management also contributes to carbon emissions, primarily through the decomposition of organic waste in landfills. As organic waste undergoes decomposition, it produces methane. Employing proper waste management techniques like composting and anaerobic digestion can aid in reducing these emissions. It is essential to acknowledge that the carbon footprint of activities can be diminished through a range of measures. Embracing energy-efficient technologies, opting for public transportation or carpooling, selecting renewable energy sources, adopting a more sustainable diet, and practicing proper waste management all serve as avenues for minimizing our carbon footprint. Comprehending the carbon footprint associated with diverse activities enables individuals, businesses, and governments to make well-informed decisions and undertake necessary actions to curb climate change. By reducing our carbon footprint, we can contribute to a future that is more sustainable and environmentally friendly.
1. Manufacturer Overview |
|
---|---|
Location | |
Year Established | |
Annual Output Value | |
Main Markets | |
Company Certifications |
2. Manufacturer Certificates |
|
---|---|
a) Certification Name | |
Range | |
Reference | |
Validity Period |
3. Manufacturer Capability |
|
---|---|
a)Trade Capacity | |
Nearest Port | |
Export Percentage | |
No.of Employees in Trade Department | |
Language Spoken: | |
b)Factory Information | |
Factory Size: | |
No. of Production Lines | |
Contract Manufacturing | |
Product Price Range |
Send your message to us
FC 92% Carbon additive
- Loading Port:
- China Main Port
- Payment Terms:
- TT OR LC
- Min Order Qty:
- -
- Supply Capability:
- -
OKorder Service Pledge
OKorder Financial Service
Similar products
Hot products
Hot Searches