• FC 90% Carbon additive System 1
  • FC 90% Carbon additive System 2
  • FC 90% Carbon additive System 3
FC 90% Carbon additive

FC 90% Carbon additive

Ref Price:
get latest price
Loading Port:
China Main Port
Payment Terms:
TT OR LC
Min Order Qty:
-
Supply Capability:
-

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Specifications

Calcined Anthracite
Fixed carbon: 90%-95%
S: 0.5% max
Size: 0-3. 3-5.3-15 or as request

Calcined Anthracite is produced using the best Anthracite-Taixi Anthracite with low S and P, It is widely used in steel making and casting, Chemical and some other fields.

General Specification of Calcined Anthracite:


PARAMETER   UNIT GUARANTEE VALUE

F.C.%

95MIN

94MIN

93MIN

92MIN

90MIN

ASH %

4MAX

5MAX

6MAX

7MAX

8MAX

V.M.%

1 MAX

1MAX

1.5MAX

1.5MAX

1.5MAX

SULFUR %

0.5MAX

0.5MAX

0.5MAX

0.5MAX

0.5MAX

MOISTURE %

0.5MAX

0.5MAX

0.5MAX

0.5MAX

0.5MAX


Size can be adjusted based on buyer's request.

Pictures of Calcined Anthracite:

FC 90%-95% Calcined AnthraciteFC 90%-95% Calcined AnthraciteFC 90%-95% Calcined AnthraciteFC 90%-95% Calcined Anthracite

We can supply below furnace charges, please feel free to contact us if you areinterested in any of any of them:
Coke (Metallurgical, foundry, gas)


Calcined Anthracite with fixed carbon from 90% to 95%



Q: What are the impacts of carbon emissions on the availability of freshwater resources?
The availability of freshwater resources is significantly influenced by carbon emissions, which have a notable impact. One of the primary consequences is the alteration of the global climate system. Global warming is caused by the greenhouse effect, which is triggered by increased carbon emissions. Consequently, there is a rise in the Earth's temperature, resulting in changes in weather patterns and precipitation. These changes in weather patterns can disturb the water cycle, which crucially affects freshwater availability. Evaporation rates increase due to warmer temperatures, leading to a greater loss of water from lakes, rivers, and groundwater reservoirs. This, in turn, reduces the overall volume of available freshwater. Furthermore, global warming can worsen drought conditions in certain regions. As carbon emissions contribute to higher temperatures, the frequency and severity of droughts also increase. This further decreases freshwater availability, as there is limited precipitation and water sources become depleted. Carbon emissions also impact freshwater resources by affecting the melting of polar ice caps and glaciers. With the Earth warming, these frozen water sources melt at an accelerated rate, initially adding more freshwater to the global water system. However, once these ice sources are depleted, the loss of freshwater will be significant. Additionally, this process negatively affects the quality of freshwater resources as pollutants and contaminants from the melting ice can enter the water. Moreover, carbon emissions contribute to ocean acidification, which indirectly affects freshwater resources. The increased carbon dioxide in the atmosphere is absorbed by the oceans, leading to acidification. This change in the ocean's chemistry can harm marine ecosystems, including coral reefs, which are essential for maintaining the health of coastal freshwater sources like aquifers. To mitigate the impacts of carbon emissions on freshwater resources, it is crucial to reduce greenhouse gas emissions and transition towards cleaner and renewable energy sources. Additionally, the implementation of effective water management practices, such as conservation measures, efficient irrigation systems, and the protection of water sources, can help preserve and sustain freshwater resources in the face of climate change and carbon emissions.
Q: How does carbon affect water quality?
Carbon can have both positive and negative effects on water quality. On one hand, carbon is a natural part of the carbon cycle and plays a crucial role in maintaining the balance of aquatic ecosystems. Carbon can act as a nutrient for aquatic plants, promoting their growth and providing food and habitat for other organisms within the food chain. However, excessive amounts of carbon in water can lead to negative impacts on water quality. One way this occurs is through an increase in dissolved organic carbon (DOC). Elevated levels of DOC can result from the decomposition of organic matter, such as dead plants and animals, and the leaching of organic compounds from soil. These organic compounds can have negative effects on water quality by reducing the amount of dissolved oxygen available for aquatic organisms, which can lead to the suffocation of fish and other aquatic life. Additionally, high levels of carbon can contribute to the process of eutrophication. Eutrophication occurs when there is an excess of nutrients, including carbon, in water bodies, leading to an overgrowth of algae and other aquatic plants. This excessive growth can result in the depletion of oxygen levels in the water as the plants decompose, causing harm to fish and other organisms that rely on oxygen for survival. Furthermore, carbon can also interact with other pollutants present in water, such as heavy metals and pesticides, which can become more toxic and bioavailable when combined with carbon. This can have detrimental effects on aquatic organisms and disrupt the overall balance of the ecosystem. Overall, while carbon is essential for the functioning of aquatic ecosystems, excessive amounts can negatively impact water quality by reducing oxygen levels, promoting eutrophication, and enhancing the toxicity of other pollutants. Therefore, it is crucial to monitor and manage carbon levels in water bodies to ensure the maintenance of a healthy and balanced aquatic ecosystem.
Q: What are the consequences of increased carbon emissions on coastal regions?
Coastal regions are significantly impacted by the increase in carbon emissions, with various alarming consequences. One particularly concerning effect is the rise in sea levels, which is caused by the melting of glaciers and polar ice caps due to the warming of the planet. This rise in sea levels poses threats such as increased flooding, erosion, and the loss of coastal ecosystems. Aside from the rise in sea levels, increased carbon emissions also contribute to ocean acidification. When seawater absorbs carbon dioxide, it forms carbonic acid, which lowers the pH of the ocean. This decrease in pH has harmful effects on marine life, especially on coral reefs and shellfish. The acidity of the waters makes it difficult for coral reefs to construct their calcium carbonate structures, leading to bleaching and eventual death. Similarly, shellfish like oysters, clams, and mussels struggle to develop their shells in more acidic waters, impacting their survival and the entire coastal food chain. Moreover, higher levels of carbon emissions contribute to the intensification of storms and extreme weather events. Rising temperatures in coastal regions result in more frequent and severe hurricanes, cyclones, and storm surges. These events cause extensive damage to coastal infrastructure, including homes, businesses, roads, and power lines. The increased frequency of storms also puts coastal communities at a higher risk of displacement and loss of livelihoods. Furthermore, increased carbon emissions contribute to global warming, which leads to higher air temperatures. The warming of coastal regions has adverse effects on the overall ecosystem. For example, warmer waters can cause certain species to migrate or become extinct, disrupting the delicate balance of coastal ecosystems. It can also impact the health and productivity of fisheries, affecting the livelihoods of fishing-dependent communities. To summarize, increased carbon emissions have wide-ranging consequences for coastal regions. Rising sea levels, ocean acidification, intensified storms, and the overall warming of coastal ecosystems pose significant threats to the environment, economies, and communities in these areas. It is crucial to reduce carbon emissions and take proactive measures to mitigate these consequences and protect our coastal regions for future generations.
Q: What are the consequences of increased carbon emissions on forest ecosystems?
Forest ecosystems experience significant consequences due to the increase in carbon emissions. One of the most notable effects is the modification of climate and weather patterns. The excessive presence of carbon dioxide in the atmosphere results in the retention of heat, leading to global warming. This rise in temperature can disrupt the delicate equilibrium of forest ecosystems. The warmer temperatures can cause shifts in the distribution and composition of tree species, as some may struggle to adapt to the changing conditions. Another outcome of the rise in carbon emissions is the acidification of rainwater. When carbon dioxide combines with water vapor, it creates carbonic acid, which can fall as acid rain. Acid rain has detrimental impacts on forest ecosystems, as it extracts vital nutrients from the soil and damages tree leaves and other vegetation. This weakens the overall health of the forest and makes it more susceptible to diseases and pests. Moreover, increased carbon emissions contribute to the intensification of wildfires. Higher temperatures and drier conditions provide an ideal environment for fires to spread and occur more frequently. Forests that have evolved to withstand natural fire patterns may struggle to cope with the increased intensity and frequency of these fires. This can result in the loss of biodiversity, destruction of habitat, and long-term degradation of forest ecosystems. Lastly, increased carbon emissions contribute to the phenomenon known as ocean acidification, where excess carbon dioxide is absorbed by the oceans. This acidification can impact the well-being of coastal and marine ecosystems, which are intricately connected to forest ecosystems. Many forest ecosystems, such as mangroves and salt marshes, serve as important nursery habitats for marine species. If these forest ecosystems decline due to carbon emissions, it can have cascading effects on the health and productivity of coastal and marine ecosystems. Overall, the increase in carbon emissions has wide-ranging consequences on forest ecosystems. It alters climate patterns, causes acid rain, intensifies wildfires, and affects coastal and marine ecosystems. These impacts not only harm the trees and vegetation within the forests but also disrupt the delicate balance of the entire ecosystem, resulting in the loss of biodiversity and long-term degradation. It is crucial to mitigate carbon emissions and promote sustainable practices to minimize these consequences and preserve the health and integrity of forest ecosystems.
Q: How does carbon impact the pH balance of oceans?
Carbon dioxide (CO2) dissolved in seawater reacts with water molecules to form carbonic acid, which lowers the ocean's pH. This decrease in pH, known as ocean acidification, has detrimental effects on marine life, especially organisms that rely on calcium carbonate to build their shells or skeletons. It disrupts the delicate balance of the marine ecosystem, affecting the growth, reproduction, and survival of various species, ultimately posing a threat to the biodiversity and health of our oceans.
Q: What is carbon nanotube?
Carbon nanotubes are cylindrical structures made up of carbon atoms arranged in a unique hexagonal lattice pattern. They are incredibly small, with diameters on the nanometer scale (about 1 billionth of a meter) and lengths that can range from a few nanometers to several centimeters. Carbon nanotubes possess remarkable properties that make them highly attractive for a wide range of applications. They are incredibly strong, with tensile strength that exceeds that of any other known material, making them ideal for use in structural composites. They also have excellent electrical conductivity, thermal conductivity, and are chemically stable, which makes them useful in fields such as electronics, energy storage, and catalysis. There are two main types of carbon nanotubes: single-walled nanotubes (SWNTs) and multi-walled nanotubes (MWNTs). Single-walled nanotubes consist of a single layer of carbon atoms rolled into a tube, while multi-walled nanotubes consist of multiple concentric layers of carbon atoms. The arrangement of carbon atoms and the diameter of the tube determine the properties of the nanotube. Carbon nanotubes have the potential to revolutionize various industries due to their unique properties. They are being explored for applications in electronics, where they can be used as high-performance transistors, interconnects, and sensors. They also hold promise in the field of energy storage, as they can be used in batteries and supercapacitors that have higher energy densities and faster charging rates. Additionally, their high surface area and unique chemical properties make them suitable for catalytic applications, such as water purification and chemical synthesis. Despite their immense potential, there are still challenges to overcome in the large-scale production and commercialization of carbon nanotubes. However, ongoing research and development efforts continue to push the boundaries of their applications, making carbon nanotubes an exciting field of study with significant future possibilities.
Q: How can carbon capture and storage help reduce greenhouse gas emissions?
CCS has the potential to make a significant contribution in the fight against greenhouse gas emissions. Its core process involves capturing carbon dioxide emitted from industrial activities or power generation, transporting it, and then underground storage in geological formations. To begin with, CCS can effectively reduce greenhouse gas emissions by capturing CO2 directly from major sources like power plants and industrial facilities. Without CCS, these sources would release CO2 into the atmosphere, exacerbating the greenhouse effect and further contributing to climate change. By capturing and storing this CO2, the negative impact on climate change is mitigated. Additionally, CCS allows for the continued use of fossil fuels, such as coal or natural gas, in a more environmentally friendly manner. These fuels are currently the main sources of energy for electricity generation and industrial processes. By implementing CCS, the emissions of CO2 from these fossil fuel activities can be significantly reduced, facilitating a gradual and economically feasible transition to cleaner energy sources. Moreover, the combination of CCS with bioenergy production creates a process known as BECCS. This involves using biomass, like crop residues or energy crops, to produce energy. The CO2 emitted during this bioenergy production is captured and stored, resulting in a net-negative emissions process. BECCS effectively removes CO2 from the atmosphere, offsetting emissions from other sectors. Lastly, CCS can play a crucial role in the decarbonization of hard-to-abate sectors, such as cement and steel production, where low-carbon alternatives are currently limited. By capturing and storing CO2 emissions from these sectors, CCS significantly reduces their overall greenhouse gas emissions and supports their transition towards more sustainable practices. In conclusion, the implementation of carbon capture and storage technology is essential in reducing greenhouse gas emissions. It directly captures and stores CO2 from major sources, allows for the sustainable use of fossil fuels, enables negative emissions through BECCS, and aids the decarbonization of challenging sectors. By incorporating CCS alongside other mitigation strategies, global climate goals can be achieved, and the battle against climate change can be fought effectively.
Q: How does carbon affect the acidity of oceans?
Carbon dioxide (CO2) dissolves in seawater to form carbonic acid (H2CO3), which increases the concentration of hydrogen ions (H+) in the water, leading to ocean acidification. This decrease in pH affects marine life by hindering the ability of shell-forming organisms to build and maintain their shells, as well as impacting other vital biological processes.
Q: How does carbon impact the global water cycle?
Carbon can have a significant impact on the global water cycle through various processes. One major way carbon affects the water cycle is through the process of photosynthesis. Plants and trees take in carbon dioxide from the atmosphere during photosynthesis and convert it into oxygen and glucose. This process not only helps in the carbon cycle but also plays a crucial role in the water cycle. During photosynthesis, plants release water vapor into the atmosphere through tiny pores called stomata. This water vapor contributes to the overall humidity in the atmosphere, leading to an increase in cloud formation. Clouds, in turn, play a crucial role in the water cycle as they contain condensed water droplets that eventually fall as precipitation. Additionally, carbon dioxide is a greenhouse gas that contributes to global warming and climate change. As the Earth's temperature rises due to increased levels of carbon dioxide, the water cycle is also affected. Warmer temperatures can lead to increased evaporation rates, causing more water to evaporate from oceans, rivers, and lakes. This excess moisture in the atmosphere can result in more intense rainfall events, leading to floods and other extreme weather events. Furthermore, carbon dioxide can impact the acidity of water bodies. When carbon dioxide dissolves in water, it forms carbonic acid, which can lower the pH of the water. This process, known as ocean acidification, can have detrimental effects on marine life, particularly organisms that rely on calcium carbonate for their shells and skeletons. These impacts can disrupt the balance of ecosystems and have long-term consequences for the health and functioning of the global water cycle. In summary, carbon has a profound impact on the global water cycle through processes such as photosynthesis, greenhouse gas emissions, and ocean acidification. Understanding these interactions is crucial for managing the effects of carbon on the environment and ensuring the sustainability of the water cycle.
Q: How does carbon impact the availability of clean energy solutions?
The availability of clean energy solutions is significantly affected by carbon. Climate change, caused mainly by carbon emissions from burning fossil fuels and human activities, poses a serious threat to the environment and human well-being. Therefore, there is an urgent need to transition to cleaner energy sources that emit less carbon. Clean energy solutions, such as solar and wind power, have the potential to greatly reduce carbon emissions. These energy sources generate electricity without burning fossil fuels, resulting in minimal to no carbon emissions. By replacing traditional energy sources with clean alternatives, we can decrease our carbon footprint and mitigate climate change. However, the presence of carbon emissions impacts the availability and scalability of clean energy solutions in multiple ways. Firstly, the continued dependence on carbon-intensive energy sources, like coal and oil, hampers the rapid adoption of clean energy technologies. The existing infrastructure and investments in fossil fuel-based energy systems make it challenging to transition to clean alternatives. Secondly, carbon emissions contribute to global warming, which affects the availability and efficiency of certain clean energy solutions. For instance, higher temperatures can decrease the effectiveness of solar panels and affect the output of hydropower due to changes in rainfall patterns. This emphasizes the significance of reducing carbon emissions to ensure the long-term viability and efficacy of clean energy technologies. Moreover, carbon emissions have economic implications that can influence the availability of clean energy solutions. Governments and policymakers play a crucial role in encouraging the adoption of clean energy through regulations, subsidies, and carbon pricing mechanisms. These policies can impact the affordability and accessibility of clean energy technologies, making them more appealing to investors and consumers. In conclusion, carbon emissions have a profound impact on the availability of clean energy solutions. By reducing carbon emissions and transitioning to cleaner energy sources, we can mitigate climate change, enhance the efficiency of clean energy technologies, and create a more sustainable future. It is crucial for governments, businesses, and individuals to prioritize the development and adoption of clean energy solutions to ensure a cleaner and healthier planet for future generations.

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

Hot products


Hot Searches