• DIN.1.2080Alloy Tool Steel D3 Mild Steel Plate in Stock System 1
  • DIN.1.2080Alloy Tool Steel D3 Mild Steel Plate in Stock System 2
  • DIN.1.2080Alloy Tool Steel D3 Mild Steel Plate in Stock System 3
  • DIN.1.2080Alloy Tool Steel D3 Mild Steel Plate in Stock System 4
  • DIN.1.2080Alloy Tool Steel D3 Mild Steel Plate in Stock System 5
  • DIN.1.2080Alloy Tool Steel D3 Mild Steel Plate in Stock System 6
DIN.1.2080Alloy Tool Steel D3 Mild Steel Plate in Stock

DIN.1.2080Alloy Tool Steel D3 Mild Steel Plate in Stock

Ref Price:
get latest price
Loading Port:
Tianjin
Payment Terms:
TT OR LC
Min Order Qty:
3 m.t.
Supply Capability:
100000 m.t./month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Specification

Type:
Carbon Steel,Spring Steel,Bearing Steel,Gear Steel,Deformed Steel,Stainless Steel,Alloy Steel
Shape:
Steel Coil,Steel Sheet,Steel Wire Rod,Steel Flat Bar,Steel Square Bar,Steel Angle,Steel Round Bar,Steel Billets
Technique:
Hot Rolled,Cold Rolled,Cold Drawn,ERW,Forged,Saw,Extruded,EFW,Spring
Surface Treatment:
Galvanized,Coated,Copper Coated,Color Coated,Oiled,Dry,Chromed Passivation,Polished,Bright,Black,PVDF Coated
Certification:
ISO,SGS,BV,IBR,RoHS,CE,API,BSI,UL
Thickness:
15-500mm
Width:
50-1500mm
Length:
1000-6000mm
Outer Diameter:
1000-6000mm
Net Weight:
0.85M.T.
Packaging:
seaworthy packaging

DIN.1.2080Alloy Tool Steel D3 Mild Steel Plate in Stock

Detailed Information of DIN.1.2080Alloy Tool Steel D3 Mild Steel Plate in Stock

 C SiPSyield Strength MApTensile strength MApElongation %
A360.24 0.40.0450.03250400-52026
 CSiMnPSCu  
A283≤0.270.15-0.4≤0.9≤0.035≤0.04≥0.2  
Thickness:6mm, 8mm, 12mm, 16mm, 20mm, 25mm, 30mm, 50mm, 80mm, 100mm, 150mm, 200mm
Width: 1500mm, 1800mm, 2000mm, 2200mm, 2500mm
Length:6000mm, 8000m, can cut to width and length
Packing Details;according to customer‘s require or export’s standard
Delivery time; 7 days for stock sizes, 20-25 days for new production sizes
Port: Tianjin China  

 

Related Products Overviews of DIN.1.2080Alloy Tool Steel D3 Mild Steel Plate in Stock

Product Name

Typical Grades

Diameter(mm)

Standard Adopted

Carbon Steel

20 (1020/S20C/C22)

 

Ø16-Ø300

 

 

 

 

 

GB/SAE/

JIS/DIN

40 (1040/S40C/C40)

45 (1045/S45C/C45)

Bearing Steel

GCr9 (51100/SUJ1)

 

Ø12-Ø250

GCr15 (52100/SUJ2/100Gr6)

GCr9SiMn (A485-Gr.1/SUJ3)

Cr-Mo Steel

20Cr (5120/SCr420H/20Cr4)

 

Ø12-Ø250

40Cr (5140/SCr440/41Cr4)

42CrMo(4140/SCM440/42CrMo4)

Gear Steel

20CrNiMo

 

Ø16-Ø600

20CrMn(5115/SMnC420/20MnCr5)

20CrNiMo(8620/SNCM220/20CrMiMo2)

Related Products Application of DIN.1.2080Alloy Tool Steel D3 Mild Steel Plate in Stock

 

Carbon Steel

l  Mold bottom

l  Plastic mold

l  Construction machinery parts

l  Automobile parts

l  Security grills

l  Screens

l  Construction

Bearing Steel 

l  Aerospace

l  Navigation

l  Nuclear energy

l  Chemical industry

l  Electronic information

l  Petrochemical

l  Instrument and meter

l  Transportation

Cr-Mo Steel 

l  Mechanism & Fasteners gear  

l  Stressed components for vehicles

l  Engines and machines

l  Parts of larger cross-section

Gear Steel

l  All kinds of gears

l  Statically and dynamically stressed component for vehicles

l  Engines and machine

l  Larger cross-section parts

l  Crankshafts

 

Company Introduction of DIN.1.2080Alloy Tool Steel D3 Mild Steel Plate in Stock

CNBM International Corporation is the most import and export platform of CNBM group(China National Building Material Group Corporation) ,which is a state-owned enterprise, ranked in 270th of Fortune Global 500 in 2015.

With its advantages, CNBM International are mainly concentrate on Cement, Glass, Iron and Steel, Ceramics industries and devotes herself for supplying high quality series of refractories as well as technical consultancies and logistics solution.

 

DIN.1.2080Alloy Tool Steel D3 Mild Steel Plate in Stock

DIN.1.2080Alloy Tool Steel D3 Mild Steel Plate in Stock

 

After-sale service

l  CNBM provides the services and support you need for every step of our cooperation. We’re the business partners you can trust; you can relax and get on with doing business.

l  For any problem, please kindly contact us at any your convenient time, we’ll reply you in our first priority within 24 hours

 

Advantages  

 

l  Industry experience over 20 years.

l  Shipment of goods -More than 70 countries worldwide.

l  The most convenient transport and prompt delivery.

l  Competitive price with best service.

l  High technical production line with top quality products.

l  High reputation based on best quality products.

 

 

Packaging & Delivery of DIN.1.2080Alloy Tool Steel D3 Mild Steel Plate in Stock

Packaging Detail

Sea worthy packing /as per customer's packing instruction

Delivery Detail

15 ~ 40 days after receiving the deposit

Products Show

DIN.1.2080Alloy Tool Steel D3 Mild Steel Plate in Stock

FAQ:   

Are you a trading company or manufacturer?

Manufacturer

What’s the MOQ?

3 metric ton

What’s your delivery time? 

15-35 days after downpayment received

Do you Accept OEM service?

Yes

what’s your delivery terms?

FOB/CFR/CIF

What's the Payment Terms?

30% as deposit,70% before shipment by T/T

Western Union acceptable for small amount.

L/C acceptable for large amount.

Scrow ,Paybal,Alipay are also ok

Why  choose  us?

Chose happens because of quality, then price, We can give you both.

Additionally, we can also offer professional products inquiry, products knowledge train (for agents), smooth goods delivery, excellent customer solution proposals.

What's your available port of Shipment?

Main Port, China

What’s your featured  services?

Our service formula: good quality+ good price+ good service=customer's trust

 

Where are your Market?

Covering more than 160 countries in the world

 

Q: How does special steel contribute to the performance of cutting tools?
Special steel contributes to the performance of cutting tools in several ways. Firstly, it offers exceptional hardness and strength, enabling the cutting tool to withstand the high forces and pressures encountered during cutting. This durability ensures that the tool remains sharp for longer periods, reducing the need for frequent replacements. Additionally, special steel also possesses excellent heat resistance, preventing the tool from overheating and maintaining its cutting ability. Moreover, special steel can have specific alloying elements that enhance wear resistance, corrosion resistance, and toughness, further improving the performance and lifespan of cutting tools. Overall, the use of special steel in cutting tools enhances their efficiency, reliability, and longevity, resulting in improved cutting precision and reduced downtime.
Q: How does high-speed steel perform in high-temperature cutting operations?
High-speed steel performs exceptionally well in high-temperature cutting operations. It has excellent heat resistance, retaining its hardness and strength even at elevated temperatures. This makes it highly effective in applications that involve high cutting speeds and temperatures, ensuring prolonged tool life and improved cutting performance.
Q: What are the factors to consider when selecting special steel for a specific application?
When choosing special steel for a particular use, there are several critical factors to take into account: 1. Mechanical properties play a crucial role in determining the steel's suitability for the application. Strength, hardness, toughness, and ductility are all important considerations. Matching the steel's mechanical properties to the specific requirements of the application is essential to achieve optimal performance and ensure safety. 2. The steel's resistance to corrosion is another key factor to consider. Different environments, such as marine, chemical, or high-temperature conditions, may necessitate the use of corrosion-resistant alloys or coatings. This is vital to ensure the steel's longevity and reliability in service. 3. Temperature resistance is crucial in many applications. The steel must be able to withstand high or low temperatures without compromising its mechanical properties. Factors like thermal expansion, thermal conductivity, and resistance to thermal fatigue should be taken into account to ensure effective performance in the intended environment. 4. If welding or fabricating the steel into complex shapes is necessary, the ease of weldability and fabricability becomes an important consideration. Certain steels may require specialized welding techniques or preheating to prevent cracking or distortion during fabrication. 5. Cost is a significant consideration as well. It is important to find a balance between the desired properties of the steel and the available budget. This ensures cost-effectiveness without compromising performance or safety. 6. The availability of the chosen steel grade in the required form, size, and quantity is another critical factor. It is crucial to ensure that the selected steel can be easily sourced and obtained within the required timeframe. This helps to avoid project delays or cost overruns. 7. Compliance with industry-specific standards, specifications, or regulations is essential. Depending on the industry or application, there may be specific requirements that the steel must meet. Selecting a steel grade that complies with these standards is necessary to ensure compliance and maintain necessary certifications or approvals. By considering these factors, engineers and manufacturers can make well-informed decisions when choosing special steel for specific applications. This ensures optimal performance, durability, and safety.
Q: What are the different surface defects in special steel?
Special steel can experience various surface defects. Some common defects include: 1. Scale, which is a layer of oxide that forms on the steel's surface during manufacturing. This can be caused by high temperatures or improper cooling, leading to a flaky or powdery appearance. The presence of scale can impact the quality and appearance of the steel. 2. Pitting refers to the development of small holes or depressions on the steel surface. It can be caused by corrosion, inadequate cleaning or surface preparation, or exposure to harsh environments. Pitting weakens the steel and makes it more prone to further corrosion. 3. Scratches are physical marks or indentations on the steel's surface. They can occur during handling, transportation, or processing. Scratches affect the integrity and appearance of the steel, often requiring repair or removal. 4. Roll marks are impressions or patterns left on the steel surface during the rolling process. Uneven pressure or improper alignment of rolling equipment can cause these marks, appearing as lines, grooves, or ridges. Roll marks impact the smoothness of the surface and may necessitate additional processing or polishing for removal. 5. Inclusions are foreign particles or substances embedded within the steel. They result from impurities in raw materials or contamination during manufacturing. Inclusions weaken the steel and have the potential to cause cracks or fractures. 6. Decarburization refers to the loss of carbon from the steel's surface layer. This can occur during heating or annealing processes, resulting in reduced hardness and strength. Decarburization is undesirable in special steel as it negatively affects performance. These are just a few examples of the surface defects that can occur in special steel. It is crucial to identify and address these defects to ensure the quality and performance of the steel product.
Q: What are the properties of high-temperature alloy steel?
High-temperature alloy steel possesses properties such as excellent heat resistance, high strength, good oxidation and corrosion resistance, and the ability to maintain mechanical properties at elevated temperatures. It is also known for its resistance to thermal fatigue, creep, and thermal shock, making it suitable for applications in high-temperature environments.
Q: How does the addition of nickel enhance the properties of special steel?
The addition of nickel enhances the properties of special steel by improving its strength, toughness, and corrosion resistance. Nickel forms a solid solution with iron, which increases the overall strength and hardness of the steel. It also enhances the toughness, making it more resistant to cracking and fractures. Additionally, nickel improves the corrosion resistance of special steel, making it suitable for applications in aggressive environments or industries such as marine, chemical, and oil and gas.
Q: What is the difference between special steel and regular steel?
Special steel refers to steel that has been specially manufactured or treated to possess specific properties or characteristics that regular steel does not have. This can include higher strength, better corrosion resistance, improved ductility, or enhanced heat resistance. Regular steel, on the other hand, refers to the general classification of steel that is commonly produced and used in various applications without any specific modifications or unique attributes.
Q: How does case-hardening steel achieve high surface hardness?
Case-hardening steel achieves high surface hardness through a process called carburizing or nitriding, where the steel is heated in the presence of carbon or nitrogen-rich substances. This allows carbon or nitrogen atoms to diffuse into the surface of the steel, creating a hardened outer layer while maintaining a tough and ductile core.
Q: How does special steel perform in renewable energy applications?
Special steel performs exceptionally well in renewable energy applications due to its unique properties and characteristics. It offers high strength, durability, and corrosion resistance, making it ideal for withstanding the harsh environmental conditions typically found in renewable energy projects. Special steel is commonly used in wind turbine components, solar panel frames, hydroelectric power plant infrastructure, and geothermal power systems. Its superior mechanical properties ensure efficient energy generation and long-term performance, contributing to the overall success and sustainability of renewable energy applications.
Q: How do alloying elements affect the properties of special steel?
The properties of special steel are greatly influenced by alloying elements. By incorporating specific elements into the steel composition, it is possible to achieve a variety of desirable characteristics. To begin with, the addition of alloying elements can enhance the steel's strength and hardness. For instance, chromium, nickel, and molybdenum can improve the steel's resistance to deformation and overall toughness. This is especially vital in situations where the steel needs to withstand high temperatures, pressure, or mechanical stress. Furthermore, alloying elements can boost the corrosion resistance of special steel. Elements like chromium, nickel, and copper create a protective oxide layer on the steel's surface, preventing rusting or corrosion. This is of particular importance in industries such as marine, oil and gas, and chemical processing, where exposure to corrosive environments is common. Moreover, alloying elements can influence the steel's weldability, machinability, and heat treatability. For example, manganese and silicon can enhance the weldability of steel, facilitating the joining of different components. On the other hand, vanadium and tungsten can enhance the steel's ability to maintain its hardness even when subjected to high temperatures, making it suitable for applications involving heat treatment. Additionally, alloying elements can affect the electrical and magnetic properties of steel. Elements like nickel and cobalt can improve the steel's magnetic properties, making it suitable for use in electrical transformers or magnetic devices. Conversely, aluminum and titanium can enhance the steel's electrical conductivity, making it ideal for electrical wiring or conductive components. In conclusion, alloying elements have a significant impact on the properties of special steel. They can enhance its strength, hardness, corrosion resistance, weldability, heat treatability, electrical conductivity, and magnetic properties. By carefully selecting and controlling the alloying elements, manufacturers can customize the steel's properties to meet the specific requirements of different industries and applications.

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

Hot products


Hot Searches

Related keywords