• Carbon Electrode With For Silicon Metal and Ferroally Production System 1
  • Carbon Electrode With For Silicon Metal and Ferroally Production System 2
  • Carbon Electrode With For Silicon Metal and Ferroally Production System 3
Carbon Electrode With For Silicon Metal and Ferroally Production

Carbon Electrode With For Silicon Metal and Ferroally Production

Ref Price:
get latest price
Loading Port:
Tianjin
Payment Terms:
TT or LC
Min Order Qty:
20 m.t.
Supply Capability:
800 m.t./month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Product Description


Carbon Electrode is abaked electrode used in submerged arc furnaces for delivering power to the charge mix. Electrode  is added to the top of the electrode column cylindrical  form.  Electrode  is essentially a mix of Electrically Calcined Anthracite (ECA) or Calcined Petroleum Coke (CPC) with Coal Tar Pitch and is baked for weeks, it is widly used for ferroally productiong, silicon metal production etc. 


Carbon Electrode Specification:


PARAMETER   UNIT GUARANTEE VALUE

 

Ash.( % )

4.0 max

5.0 max

6.0 max

7.0 max

9.0 max

11.0 max

 

V.M %

12.0-15.5

12.0-15.5

12.0-15.5

9.5-13.5

11.5-15.5

11.5-15.5

 

Compress Strength. (Mpa)

18.0 min

17 min

15.7 min

19.6 min

19.6 min

19.6 min

 

Specific Resistance μΩm   

65  max

68 max

75 max

80 max

90 max

90 max

 

Bulk Density (G/CM3)

1.38 min

1.38 min

1.38 min

1.38 min

1.38 min

1.38 min

 

 

PACKAGE: The cargo is packaged on pallets.


Picture:

 

 

Carbon Electrode With For Silicon Metal and Ferroally Production

Carbon Electrode With For Silicon Metal and Ferroally Production

Carbon Electrode With For Silicon Metal and Ferroally Production

Carbon Electrode With For Silicon Metal and Ferroally Production


We Also supply all kind of carbon electrode paste and below materials, please contact us if you have any enquiry about it.

Calcined Anthracite

Calcined Petroleum Coke

Coke (Met Coke, Foundry Coke, Semi Coke)


 



Q: Process for producing carbon fiber board
Carbon fiber forming process:1, pressing method. This method is put into the carbon fiber prepreg resin has the metal mold, the pressure of excess glue overflow, then high temperature curing, stripping the finished products come out, this method is the most suitable for production of auto parts.2, hand paste layer method. The impregnated carbon fiber sheets are cut or laminated, or so that the sides of the layer are brushed with resin and then pressed to form. This method can be used arbitrarily to select the direction, size and thickness of fibers and is widely used. Note that the shape of the layer is smaller than the shape of the mold, so that the fiber will not bend when it is pressed in the mold.3 、 vacuum bag hot pressing method. Laminated on the mold hill and covered with heat-resistant film, applying pressure from the soft pocket to the laminate and curing in hot pressing.4, winding forming method. The carbon fiber monofilament is wound on the carbon fiber shaft, and is especially suitable for making cylindrical and hollow containers.5, pultrusion. The carbon fiber is fully infiltrated, and the resin and air are removed by extrusion, then solidified in the furnace. The method is simple and suitable for preparing rod shaped and tubular parts.
Q: What's the reason for grading? What about the use of composites? What's the difference?
1, carbon fiber has a benzene ring structure, making it difficult to rotate the molecular chain. A polymer molecule cannot fold and stretch to form a rodlike structure, thus giving fibers a high modulus.The linear structure of carbon fiber polymers allows molecules to be arranged so closely that a large number of polymer molecules can be accommodated in a unit volume. This high density makes the fibers stronger.
Q: What is the role of carbon in the formation of fossil fuels?
Carbon plays a crucial role in the formation of fossil fuels. Fossil fuels, including coal, oil, and natural gas, are formed from the remains of ancient plants and organisms that lived millions of years ago. These ancient organisms contained a significant amount of carbon, which is the primary component of fossil fuels. The process of fossil fuel formation begins with the decomposition of organic matter. When plants and organisms die, their remains accumulate in an environment with limited oxygen, such as swamps, lakes, and ocean floors. Over time, these organic materials are buried under layers of sediment, subjecting them to immense pressure and heat. Under these extreme conditions, the organic matter undergoes a process called diagenesis, which involves the breakdown of complex organic molecules into simpler compounds. This process releases gases like methane and carbon dioxide. However, the carbon-rich compounds that resist decomposition become the building blocks of fossil fuels. Over millions of years, the pressure and heat continue to transform these organic remains. The carbon-rich compounds undergo a process called catagenesis, where they get progressively altered, forming hydrocarbon chains. This transformation leads to the formation of coal, oil, and natural gas, which are all composed primarily of carbon, hydrogen, and a few other elements. The carbon present in fossil fuels is responsible for their high energy content. When burned, fossil fuels release carbon dioxide and other greenhouse gases into the atmosphere, contributing to climate change. However, the role of carbon in the formation of fossil fuels is crucial as it provides a concentrated source of energy that has been vital for human civilization and industrial development.
Q: What are the advantages of carbon-based fertilizers?
Farmers and gardeners favor carbon-based fertilizers for several reasons. Firstly, these fertilizers, such as compost and manure, are organic and derived from natural sources, devoid of synthetic chemicals. This eco-friendly quality reduces the risk of water pollution and soil degradation. Secondly, carbon-based fertilizers contain ample organic matter, enhancing soil structure and water retention. This proves especially helpful in areas with infertile soil or frequent droughts, as it conserves moisture and prevents nutrient loss. Furthermore, these fertilizers foster the growth of beneficial microorganisms in the soil. These microorganisms gradually break down organic matter, releasing essential nutrients and ensuring a steady supply to plants. The result is improved plant health and a decreased likelihood of nutrient imbalances or deficiencies. Additionally, carbon-based fertilizers prove cost-effective in the long run. Though they may require more effort and time initially, they can be produced on-site through composting or sourced locally from farms or livestock operations. This reduces the need for expensive chemical fertilizers and minimizes transportation costs. Lastly, carbon-based fertilizers aid in carbon sequestration and contribute to combating climate change. By utilizing organic waste materials as fertilizers, they divert them from landfills, where they would emit greenhouse gases. Instead, they are recycled into the soil, increasing its carbon content and promoting soil health. In summary, carbon-based fertilizers offer numerous advantages in terms of sustainability, soil fertility, cost-effectiveness, and environmental impact. Their usage can yield healthier plants, improved soil quality, and a more sustainable and resilient agricultural system.
Q: What is the carbon content of different types of rocks?
The carbon content of different types of rocks can vary significantly. Generally, rocks are composed of minerals, and carbon is not a primary component of most minerals. However, some types of rocks can contain varying amounts of carbon due to the presence of organic matter or other carbon-rich materials. Sedimentary rocks, such as limestone and coal, have the potential to contain higher levels of carbon. Limestone is primarily composed of calcium carbonate, but it can also contain small amounts of organic matter or carbonates that contribute to its carbon content. Coal, on the other hand, is a sedimentary rock formed from the remains of plant material that has undergone extensive decomposition and carbonization. As a result, coal has a high carbon content, often ranging from 50% to 90%. Igneous rocks, which are formed from the solidification of molten material, generally have very low carbon content. This is because the process of magma crystallization does not involve the incorporation of carbon-rich materials. However, there can be exceptions in certain cases where magma interacts with carbon-rich fluids or rocks, leading to the formation of carbon-bearing minerals like graphite or diamond. Metamorphic rocks, which are formed through the transformation of existing rocks under high pressure and temperature conditions, may contain varying amounts of carbon. The carbon content in metamorphic rocks can be derived from the original rock or introduced through the process of metamorphism. For example, the presence of carbonaceous material in shale or limestone can be transformed into graphite or other carbon-rich minerals during metamorphism. It is important to note that while some rocks may contain significant carbon content, rocks are not considered a major reservoir of carbon in the Earth's carbon cycle. The majority of carbon is stored in the atmosphere as carbon dioxide, in the oceans, or in organic matter within living organisms.
Q: What are carbon nanotubes?
Carbon nanotubes are cylindrical structures made entirely of carbon atoms arranged in a unique way. They have a diameter of only a few nanometers, hence the name "nanotubes". These tubes can be incredibly long, with lengths that can reach up to several centimeters. Carbon nanotubes possess extraordinary properties due to their unique structure. They are incredibly strong and have excellent mechanical properties, being about 100 times stronger than steel at one-sixth of the weight. Additionally, they have exceptional thermal and electrical conductivity. These nanotubes can be categorized into two main types: single-walled carbon nanotubes (SWCNTs) and multi-walled carbon nanotubes (MWCNTs). The single-walled nanotubes consist of a single layer of carbon atoms rolled into a tube, while multi-walled nanotubes consist of multiple layers of these tubes nested within each other. Carbon nanotubes find applications in various fields due to their exceptional properties. In electronics, they are used as transistors and interconnects due to their high electrical conductivity. They are also utilized in energy storage devices, such as batteries and supercapacitors, due to their high surface area and high electrical conductivity. In materials science, carbon nanotubes are used to reinforce composites, making them stronger and lighter. They also have potential applications in medicine, as drug delivery systems and as imaging agents. Research is ongoing to further understand and harness the potential of carbon nanotubes. However, challenges remain in terms of their large-scale production, cost-effectiveness, and potential health and environmental concerns. Overall, carbon nanotubes represent an exciting and promising area of nanotechnology with vast potential for advancements in various fields.
Q: What are the different types of carbon-based pigments?
Various industries widely use several different types of carbon-based pigments. Some of the most commonly used types are carbon black, graphite, charcoal, and lampblack. Carbon black, renowned for its intense black color, is a highly pure form of carbon produced through the incomplete combustion of hydrocarbon fuels. It finds extensive applications in inks, paints, plastics, and rubber products. Graphite, on the other hand, is an important carbon-based pigment known for its dark gray to black shade. It is a brittle material that can be easily crushed into a fine powder. Graphite is primarily used in pencils due to its ability to leave a smooth and consistent mark on paper. Additionally, it finds utility in lubricants, batteries, and electrical conductors. Charcoal, obtained by burning wood or organic materials without oxygen, is a carbon-based pigment admired for its deep black color. Artists commonly use charcoal as a drawing medium because it can be easily manipulated and smudged on paper, allowing for the creation of various tones and textures. Lampblack, also referred to as carbon black or soot, is a pigment produced by burning organic materials like oil or wood. It possesses a profound black hue and is frequently employed in printing inks, coatings, and dyes. Lampblack is also utilized in diverse industrial applications, including as a coloring agent in plastics and rubber products. These examples represent only a fraction of the diverse carbon-based pigments commonly employed. Each type possesses unique attributes and serves essential purposes in various industries.
Q: How does carbon impact the prevalence of tropical storms?
Carbon, specifically in the form of carbon dioxide (CO2) emissions, plays a significant role in impacting the prevalence of tropical storms. The increase in atmospheric CO2 levels due to human activities such as burning fossil fuels, deforestation, and industrial processes has led to the phenomenon known as global warming. This rise in global temperatures has several implications for the formation and intensity of tropical storms. Firstly, warmer temperatures cause an increase in the evaporation of seawater, resulting in higher levels of moisture in the atmosphere. Moisture is a crucial factor in the development of tropical storms, as it provides the necessary fuel for their formation and sustenance. With more moisture available, the potential for tropical storms to develop and strengthen is enhanced. Additionally, rising global temperatures lead to the expansion of the warm tropical oceans, providing a larger area for tropical storms to form and intensify. This expansion allows for a greater exchange of energy between the ocean and the atmosphere, further enhancing the potential for storm development. Furthermore, elevated levels of CO2 contribute to ocean acidification, which has detrimental effects on marine ecosystems, including coral reefs. Coral reefs act as natural barriers that protect coastal areas from storm surges and waves generated by tropical storms. However, the acidification of oceans weakens and destroys these reefs, leaving coastal regions more vulnerable to the impacts of storms. Lastly, climate change caused by carbon emissions alters atmospheric and oceanic circulation patterns, which can affect the movement and tracks of tropical storms. Changes in wind patterns and ocean currents may cause storms to deviate from their traditional paths, leading to increased uncertainty and potential impacts on regions that are not typically prone to these events. In summary, carbon emissions and the subsequent global warming they cause have significant impacts on the prevalence of tropical storms. Increased moisture content, expanded warm ocean areas, weakened coastal defenses, and altered storm tracks are all consequences of rising carbon levels, which ultimately contribute to more frequent and intense tropical storms.
Q: What is the atomic weight of carbon?
The atomic weight of carbon is approximately 12 atomic mass units.
Q: What is the burning point of carbon?
There are many forms of carbon, such as charcoal, coal, and even diamonds!And different forms have different ignition points!Generally speaking, the ignition point of charcoal is relatively low, about 300 degrees, and the coal is higher, at 600 - 700 degrees!

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

Hot products


Hot Searches