• Steels Manufacture Building Material Construction with Good Quality on Hot Sale System 1
  • Steels Manufacture Building Material Construction with Good Quality on Hot Sale System 2
  • Steels Manufacture Building Material Construction with Good Quality on Hot Sale System 3
Steels Manufacture Building Material Construction with Good Quality on Hot Sale

Steels Manufacture Building Material Construction with Good Quality on Hot Sale

Ref Price:
get latest price
Loading Port:
Tianjin
Payment Terms:
TT OR LC
Min Order Qty:
100 m.t
Supply Capability:
1000 m.t/month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

1.Packaging & Delivery

Packaging Detail:

in bundles or as customer's requirement

Delivery Detail:

Within 30days after receiving your deposit or copy of L/C

2.Specifications

HRB400,HRB500 Steel Rebars
1.China direct supplier
2.Best service
3.Competitive price
4.Quantity assured

 3.Product Description

Name

High Tensile Export Reinforcing Steel Bar ,Deformed Steel Bar ,HRB400B,HRB,46B,HRB500 Building Construction Material

Standard

ASTM A615 /BS BS 4449 /GB HRB/ JIS G3112  

Grade

A615 Gr40/60/75

BS 4449 Gr460,B500

GB HRB335,HRB400 ,HRB500

 

JIS G3112 SD390

 

Diameter

6mm-40mm

Length

6-12m

Technique

Low temperature hot-rolling reinforcing deformed steel rebar  

Tolerance

As the standard or as your requirement

Application

Building, construction, road, bridge,etc

Certificated

 BV

MOQ

500tons per size steel rebar

Packing details

Steel rebar packed in bundle or as your requirement

Delivery

Within 30 days after deposit

Payment

T/T or L/C

 4.Chemical Composition

 

Grade

Technical data of the original chemical composition (%) 

C

Mn

Si

S

P

V

HRB400

≤0.25

≤1.60

≤0.80

≤0.045

≤0.045

0.04-0.12

Physics capability

Yield Strength(N/cm2)

Tensile Strength(N/cm2)

Elongation (%)

 

≥400

≥470

≥14

 

Grade

Technical data of the original chemical composition (%) 

C

Mn

Si

S

P

V

HRB500

≤0.25

≤1.60

≤0.80

≤0.045

≤0.045

0.04-0.12

Physics capability

≥500

≥630

≥12

5. Theorectical weight 

Diameter

(MM)

Cross

Sectional

Area

(MM2)

Theorectical

Weight

(KG/M)

Weight of

12M Bar

(KG)

A Ton

Contains

12M Bars

(PCS)

6

28.27

0.222

2.664

375.38

8

50.27

0.395

4.74

210.97

10

78.54

0.617

7.404

135.06

12

113.1

0.888

10.656

93.84

14

153.9

1.21

14.52

68.87

16

201.1

1.58

18.96

52.74

18

254.5

2

24

41.67

20

314.2

2.47

29.64

33.74

22

380.1

2.98

35.76

27.96

25

490.9

3.85

46.2

21.65

28

615.8

4.83

57.96

17.25

32

804.2

6.31

75.72

13.21

36

1018

7.99

98.88

10.43

40

1257

9.87

118.44

8.44

 

Steels Manufacture Building Material Construction with Good Quality on Hot Sale

Steels Manufacture Building Material Construction with Good Quality on Hot Sale

Steels Manufacture Building Material Construction with Good Quality on Hot Sale

 

Q: What is the difference between steel pipes and PVC-U pipes?
Steel pipes are made of a durable and strong material, while PVC-U pipes are made of a plastic material. Steel pipes are typically used for high-pressure and heavy-duty applications, as they can withstand harsh conditions and have a longer lifespan. PVC-U pipes, on the other hand, are lighter in weight, easier to handle, and resistant to corrosion and chemicals. They are commonly used for low-pressure applications and are more cost-effective.
Q: How are steel pipes used in the automotive exhaust system?
Steel pipes are used in the automotive exhaust system to transport and expel the exhaust gases from the engine. They are durable and resistant to high temperatures, making them suitable for this purpose. Steel pipes are often bent and welded together to form the exhaust system, ensuring a smooth flow of exhaust gases and minimizing any leaks.
Q: What are the different end finishes available for steel pipes?
Steel pipes have various end finishes available, depending on the specific application and requirements. Some common options include: 1. Plain End: The simplest and most common type, where the pipe ends are cut square without any additional treatment or threading. 2. Beveled End: This involves an angled cut at the end of the pipe, typically at a 30-degree angle. It facilitates better welding and ensures a seamless transition between pipes. 3. Threaded End: These ends are useful for connecting pipes with other components using threaded fittings. The pipe ends are cut with external threads, allowing for easy assembly and disassembly. 4. Coupling End: Similar to threaded ends, coupling ends have internal threads. This enables pipes to be connected using couplings or connectors. 5. Grooved End: This type is commonly used in fire protection systems or other applications that require quick and easy installation. The pipe ends are grooved, and a coupling is used to connect and secure the pipes. 6. Flanged End: Flanged ends have a flat, wide surface with holes for bolts. They are used when the pipe needs to be connected to other components using flanges, such as in piping systems or equipment connections. Each of these end finishes serves a specific purpose and is chosen based on the application's requirements. The selection depends on factors like the desired type of connection, intended use of the pipe, and the applicable industry standards and regulations.
Q: Can steel pipes be used for both high-pressure and low-pressure systems?
Yes, steel pipes can be used for both high-pressure and low-pressure systems. Steel pipes are known for their durability and strength, making them suitable for various applications, including both high and low-pressure systems. However, it's important to consider the specific requirements and regulations of the system to ensure the appropriate type and grade of steel pipe is selected for optimal performance and safety.
Q: D108*4 what does "D108" mean by seamless steel tubes? What does "*4" mean?
D108: refers to the outer diameter of 108mm;4: refers to the wall thickness of 4mm.
Q: How do you calculate the stress in a steel pipe?
To calculate the stress in a steel pipe, you need to determine the applied force or load acting on the pipe and divide it by the cross-sectional area of the pipe. This will give you the stress value, which is typically measured in units of force per unit area (such as pounds per square inch or pascals).
Q: How are steel pipes used in oil and gas industry?
Steel pipes are extensively used in the oil and gas industry for various purposes such as drilling, production, transportation, and refining. They are primarily used for the extraction of oil and gas from the ground, as well as for the transportation of these resources over long distances. Steel pipes are also utilized in the construction of storage tanks, refineries, and offshore drilling platforms. Their strength, durability, and resistance to corrosion make them ideal for withstanding the harsh conditions encountered in the oil and gas industry.
Q: What are the advantages of using steel pipes in plumbing systems?
There are several advantages of using steel pipes in plumbing systems. Firstly, steel pipes are highly durable and can withstand high levels of pressure, making them suitable for carrying water and other fluids. Additionally, steel pipes are resistant to corrosion, which ensures longevity and prevents leaks. Steel pipes also have a smooth interior surface, which improves water flow and reduces the risk of blockages. Moreover, steel pipes are fire-resistant and do not contribute to the spread of flames, enhancing overall safety. Lastly, steel pipes are environmentally friendly as they are often made from recycled materials and can be recycled again at the end of their lifespan.
Q: What are the common applications of steel pipes?
Steel pipes have a wide range of common applications, including plumbing systems, transportation of liquids and gases, construction projects, oil and gas exploration, as well as in industrial processes such as manufacturing and power generation.
Q: How are steel pipes protected from damage during transportation?
Various methods are used to protect steel pipes from damage during transportation. One commonly employed technique involves applying protective coatings to the pipes. Materials like epoxy, zinc, or polyethylene are often used for this purpose, creating a barrier between the pipe and external elements. These coatings effectively prevent corrosion and damage during transit. In addition, steel pipes are frequently bundled together and secured using straps or bands. This bundling ensures that the pipes remain in place and prevents any shifting or rolling during transportation. Furthermore, padding or cushioning materials, such as foam or rubber, may be utilized to provide extra protection and reduce the risk of damage from impact or vibration. Sometimes, steel pipes are placed in crates or containers to provide further safeguarding. Crates are designed to snugly fit the pipes, offering a secure enclosure that shields against external forces. On the other hand, containers create a protective environment for the pipes, shielding them from the elements and potential impacts. To guarantee the safe transportation of steel pipes, proper handling and loading techniques are crucial. Pipes should be lifted and loaded onto transport vehicles with care, utilizing suitable equipment like cranes or forklifts to minimize the risk of damage. It is also essential to properly secure the pipes within the transport vehicle to prevent any movement or potential damage during transit. Overall, a combination of protective coatings, bundling, padding, and secure packaging or loading techniques is employed to ensure the safety of steel pipes during transportation. These measures guarantee that the pipes arrive at their destination in optimal condition, ready for use in various applications.

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

Hot products


Hot Searches

Related keywords