• S35C Forged Alloy Steel Round Bars with Cheap Price System 1
  • S35C Forged Alloy Steel Round Bars with Cheap Price System 2
  • S35C Forged Alloy Steel Round Bars with Cheap Price System 3
  • S35C Forged Alloy Steel Round Bars with Cheap Price System 4
  • S35C Forged Alloy Steel Round Bars with Cheap Price System 5
S35C Forged Alloy Steel Round Bars with Cheap Price

S35C Forged Alloy Steel Round Bars with Cheap Price

Ref Price:
get latest price
Loading Port:
Tianjin
Payment Terms:
TT OR LC
Min Order Qty:
25 m.t.
Supply Capability:
50000 m.t./month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Specification

Type:
Carbon Steel
Shape:
Steel Round Bar
S35C Forged Alloy Steel Round Bars with Cheap Price


Product Description:

1. Sizes: Diameter: 16mm-300mm; Length: 6m, 9m, 12m

2. Grade: 35#, SAE1035, S35C, C35
3. Invoicing on theoretical weight or actual weight as customer’s request

4. Shape: Round bar, solid bar of steel with circular section

5. Technique: Hot rolled, forged, cold rolled

 

Chemical Composition:

C

Si

Mn

P

S

Ni

Cr

Cu

0.32-0.40

0.17-0.37

0.50-0.80

≤0.035

≤0.035

≤0.30

≤0.25

≤0.25

 

Packing and Delivery:

Packing in bundle with steel strips and shipped by break bulk vessel or container (depend on target market and different ports)

Delivery Detail: Approx.45 days

 

Usage and Applications:
1. Steel round bar is used in a large number of architectural and engineering structures. Or it can be used in construction of plants for the production of steel house frames, high-voltage transmission towers, bridges, vehicles, boilers, containers, ships, etc.

2. And we can use this kind of product on the performance of the mechanical parts if the demand is not very high.

3. Some especial material steel round bar can be used for main shaft of steamer, hummer shank, with big section and supper force.

 

Specification:

OD

Length

Material

Standard

Technique

16-260mm

6-12m or  aques per request

20#

GB ASTM  DIN

Hot  rolled

16-350mm

35#

200-500mm

35#

Forged

20-250mm

20Cr,40Cr,20-42CrMo

Hot  rolled

50-300mm

GCr15

 

Main product pictures:

SAE 1035 Carbon Steel Round Bar CNBM

SAE 1035 Carbon Steel Round Bar CNBM

SAE 1035 Carbon Steel Round Bar CNBM

 

 


Q: What is the role of special steel in the defense industry?
Special steel plays a critical role in the defense industry due to its unique properties and capabilities. One of the primary functions of special steel in defense is to provide strength and durability to various components and structures of military equipment, such as tanks, armored vehicles, naval vessels, and aircraft. These steels are designed to withstand extreme conditions, including high impact and ballistic resistance, making them essential for ensuring the safety and protection of military personnel. Another significant role of special steel in the defense industry is its contribution to the production of cutting-edge weaponry. Special steel alloys are used to manufacture firearms, missiles, and artillery systems, providing the necessary strength, hardness, and corrosion resistance required for such applications. These steels allow for the precise manufacturing of complex weapon systems, ultimately enhancing their performance, accuracy, and reliability. Moreover, special steel also plays a vital role in the defense industry by enabling the development of advanced communication and electronics technologies. Steel alloys with specific magnetic properties are utilized in the production of radar systems, satellite components, and other electronic devices critical for military surveillance, intelligence, and communication purposes. These steels enable the efficient transmission and reception of signals, enhancing the overall capabilities of defense systems. In summary, special steel is indispensable in the defense industry due to its strength, durability, and unique properties. It provides the necessary foundation for the construction of military equipment, enhances the performance of weapons, and enables the development of advanced communication and electronics technologies. By utilizing special steel, the defense industry can ensure the safety, effectiveness, and technological superiority of military operations.
Q: What are the requirements for special steel used in low-temperature applications?
Special steel used in low-temperature applications must meet certain requirements to ensure its performance and reliability in such conditions. These requirements primarily revolve around three key factors: toughness, resistance to brittle fracture, and corrosion resistance. Toughness is of utmost importance in low-temperature applications because it determines a material's ability to absorb energy and resist cracking or fracturing. Special steel for low-temperature applications should have high toughness, which is typically achieved through the addition of certain alloying elements such as nickel and manganese. These elements enhance the steel's ability to withstand impact loads and prevent catastrophic failures. Resistance to brittle fracture is another crucial requirement for steel used in low-temperature environments. At low temperatures, steel becomes more susceptible to brittle fracture, which can occur without any significant deformation or warning. To mitigate this risk, special steel for low-temperature applications undergoes specific heat treatment processes to refine its microstructure and improve its resistance to brittle fracture. Corrosion resistance is also an essential requirement for special steel used in low-temperature applications. Low temperatures can often lead to the formation of ice or condensation, which can introduce moisture and potentially corrosive substances to the steel's surface. Therefore, the steel must have excellent corrosion resistance properties to prevent degradation and maintain its structural integrity over time. This is commonly achieved through the addition of corrosion-resistant elements such as chromium and molybdenum. In addition to these primary requirements, other factors such as dimensional stability, weldability, and cost-effectiveness should also be considered when selecting special steel for low-temperature applications. The material should have good dimensional stability to ensure it retains its shape and mechanical properties under varying temperature conditions. It should also be easily weldable to facilitate construction and maintenance processes. Moreover, the selected steel should be cost-effective, balancing its performance with the overall project budget. Overall, special steel used in low-temperature applications must possess high toughness, resistance to brittle fracture, and corrosion resistance. Meeting these requirements ensures the steel's reliability and longevity in challenging low-temperature environments, allowing for safe and efficient operation in various industries such as cryogenic storage, oil and gas exploration, and transportation.
Q: How does special steel contribute to reducing maintenance costs?
Special steel contributes to reducing maintenance costs by providing increased durability and resistance to wear and corrosion. Its superior strength and hardness properties make it less susceptible to damage, thereby reducing the frequency of repairs and replacements. Additionally, special steel's ability to withstand extreme temperatures and harsh environmental conditions extends the lifespan of components, reducing the need for frequent maintenance and associated costs.
Q: What are the advantages of using special steel over other materials?
There are several advantages of using special steel over other materials. Firstly, special steel has higher strength and toughness, making it more durable and resistant to wear and tear. Secondly, it offers excellent corrosion resistance, preventing rust and extending the lifespan of the product. Additionally, special steel can withstand extreme temperatures, making it suitable for applications in various industries. Moreover, its versatility allows for easy customization and shaping, meeting specific design requirements. Lastly, special steel is known for its high recyclability, making it an environmentally friendly choice.
Q: How does special steel perform in cryogenic gas environments?
Special steel performs well in cryogenic gas environments due to its high ductility and toughness at low temperatures. It is able to maintain its mechanical properties and resist embrittlement, making it suitable for applications such as LNG storage tanks, aerospace components, and cryogenic pipelines. Additionally, special steel exhibits excellent resistance to corrosion and oxidation, further enhancing its performance in cryogenic gas environments.
Q: What are the physical properties of special steel?
Special steel refers to a broad category of steel alloys that possess unique physical properties compared to regular steel. These properties can vary depending on the specific type of special steel. However, some common physical properties include high strength, hardness, toughness, and resistance to corrosion and wear. Special steels are often tailored for specific applications, such as automotive components, aerospace structures, or toolmaking, to meet the demanding requirements of these industries.
Q: What are the different wear-resistant grades of special steel?
There are several different wear-resistant grades of special steel, including but not limited to, AR400, AR500, AR600, Hardox 400, Hardox 450, Hardox 500, Hardox 600, Bisplate 400, Bisplate 450, Bisplate 500, Bisplate 600, and Creusabro 4000. These grades are specifically designed to withstand abrasive wear and impact, making them ideal for applications in industries such as mining, construction, and manufacturing.
Q: How is special steel graded?
Different factors, including its chemical composition, mechanical properties, and intended application, are taken into account when grading special steel. The grading system provides a standardized classification that aids in the identification and selection of the appropriate steel type for specific purposes. One commonly used method of grading special steel involves the use of alphanumeric codes. These codes consist of a combination of letters and numbers that represent specific characteristics of the steel. For instance, the American Iron and Steel Institute (AISI) employs a four-digit numbering system to grade various steel alloys. The first digit signifies the main alloying element, such as carbon or manganese, while the subsequent digits provide additional information regarding the steel's composition and properties. In addition to alphanumeric codes, special steel can also be graded based on its mechanical properties. This entails testing the steel's strength, hardness, toughness, and other performance indicators. The results of these tests determine the steel's specific grade, which helps users assess its suitability for particular applications. International standards organizations like ASTM International and the International Organization for Standardization (ISO) provide guidelines and specifications for grading special steel based on these mechanical properties. Furthermore, the intended application of the special steel also significantly influences its grading. Industries such as aerospace or automotive have specific material requirements. Therefore, special steel intended for these sectors is graded based on its ability to meet those requirements, such as corrosion resistance, heat resistance, or wear resistance. Special steel grades can also be categorized based on their ability to withstand extreme conditions or fulfill specific functions, such as tool steels for cutting or forming operations. Overall, the grading of special steel involves considering its chemical composition, mechanical properties, and intended application. By utilizing standardized grading systems and specifications, manufacturers, engineers, and other users can easily identify and select the most suitable type of special steel for their specific needs.
Q: What are the properties of high-strength alloy steel?
High-strength alloy steel possesses a combination of outstanding mechanical properties such as high tensile strength, good toughness, excellent wear resistance, and superior corrosion resistance. This type of steel is known for its ability to withstand heavy loads, extreme temperatures, and harsh environments, making it suitable for applications in industries like aerospace, automotive, and construction.
Q: What are the different methods of improving the machinability of special steel?
There are several methods available for improving the machinability of special steel. One approach is to modify the steel composition by adding elements such as sulfur, lead, or selenium, which can help break the chips during the machining process. Another method involves using coatings or surface treatments on the steel to reduce friction and heat generation during machining. Additionally, optimizing the cutting parameters, such as speed, feed rate, and cutting tool geometry, can also enhance machinability. Lastly, post-machining processes like stress relieving or heat treatment can be employed to improve the overall machinability of the special steel.

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

Hot products


Hot Searches

Related keywords