• Round Bar 42CrMo 4140 Steel of CNBM System 1
  • Round Bar 42CrMo 4140 Steel of CNBM System 2
Round Bar 42CrMo 4140 Steel of CNBM

Round Bar 42CrMo 4140 Steel of CNBM

Ref Price:
get latest price
Loading Port:
Shanghai
Payment Terms:
TT OR LC
Min Order Qty:
25 m.t.
Supply Capability:
50000 m.t./month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Specification

Type:
Alloy Steel
Shape:
Steel Round Bar

Round Bar 42CrMo 4140 Steel of CNBM 

 

Product Description:

1. Sizes: Diameter: 16mm-300mm; Length: 6m, 9m, 12m

2. Grade: 42CrMo, 4140,42CrMov

3. Invoicing on theoretical weight or actual weight as customer’s request

4. Shape: Round bar, solid bar of steel with circular section

5. Technique: Hot rolled, forged, cold rolled

 

Specification:

Material

42CrMo

Round bar

Dia(mm)

16-600

Process

EAF + LF + VD + Forged + Heat Treatment (optional)

Length (mm)   

Max 12000

Heat treatment

Normalized / Annealed / Quenched / tempered

Flat bar

Thickness(mm) 

8-500

Delivery condition

Hot forged +Rough machined (black surface after Q/T)+ Turned (optional)

Width(mm)

70-200

Test

Ultrasonic test according to SEP 1921-84 D/d

Length (mm)   

Max 12000


 

Chemical Composition:

C

Si

Mn

Cr

Ni

Cu

0.38~0.45

0.17~0.37

0.50~0.80

0.9-1.2

≤0.030

≤0.030

 

Packing and Delivery:

Packing in bundle with steel strips and shipped by break bulk vessel or container (depend on target market and different ports)

Delivery Detail: Approx.45 days

 

Usage and Applications:
1. Steel round bar is used in a large number of architectural and engineering structures. Or it can be used in construction of plants for the production of steel house frames, high-voltage transmission towers, bridges, vehicles, boilers, containers, ships, etc.

2. And we can use this kind of product on the performance of the mechanical parts if the demand is not very high.

3. Some especial material steel round bar can be used for main shaft of steamer, hummer shank, with big section and supper force.

 

Product Show:

Round Bar 42CrMo 4140 Steel of CNBM

Round Bar 42CrMo 4140 Steel of CNBM

Round Bar 42CrMo 4140 Steel of CNBM

 

Q: What are the different surface finishing methods used for special steel?
There are several surface finishing methods used for special steel, each serving a specific purpose and achieving different results. Some of the common surface finishing methods for special steel include: 1. Grinding: Grinding is the process of using abrasive materials to remove excess material from the surface of the steel. It is typically used to achieve a smooth and polished finish, as well as to remove any imperfections or roughness. 2. Polishing: Polishing involves using polishing compounds and abrasive materials to create a smooth and shiny surface on the steel. This method is often used to enhance the aesthetic appeal of the steel and improve its corrosion resistance. 3. Shot blasting: Shot blasting is a technique that involves propelling small metal or mineral particles at high speeds onto the surface of the steel. This process helps to remove any contaminants, scale, or rust from the surface, resulting in a clean and uniform finish. 4. Electroplating: Electroplating is a process where a thin layer of metal is deposited onto the surface of the steel through an electrochemical reaction. This method is commonly used to enhance the appearance of the steel, improve its corrosion resistance, and provide a decorative or protective coating. 5. Passivation: Passivation is a chemical process that involves treating the surface of the steel with an acid solution to remove any impurities and create a passive, corrosion-resistant layer. This method is often used to improve the corrosion resistance of stainless steel and other alloys. 6. Coating: Coating is the process of applying a protective layer or coating onto the surface of the steel. This can include paints, lacquers, enamels, or other types of protective coatings that help to prevent corrosion, improve durability, or provide a specific aesthetic finish. It is important to note that the choice of surface finishing method for special steel depends on the desired outcome, such as aesthetics, corrosion resistance, or functionality. Additionally, the specific characteristics of the steel, such as its composition, hardness, and intended application, also play a significant role in determining the most suitable surface finishing method.
Q: What are the different surface hardening techniques for special steel?
To enhance the mechanical properties and improve the wear resistance of special steel, there exists a range of surface hardening techniques that can be employed. These techniques encompass: 1. Case hardening: Through diffusion, carbon or nitrogen is introduced into the steel surface. By subjecting the steel to an environment rich in carbon or nitrogen, the atoms disseminate into the surface layer, resulting in the creation of a hardened case while maintaining a resilient core. 2. Nitriding: The process of introducing nitrogen into the steel surface to enhance its hardness is known as nitriding. By placing the steel in an environment abundant in nitrogen at elevated temperatures, a hardened surface layer is formed, exhibiting improved resistance to wear and corrosion. 3. Carburizing: Carbon is introduced into the steel surface through carburizing. By heating the steel in an environment rich in carbon, the carbon atoms diffuse into the surface layer, leading to the development of a hardened case with heightened hardness and wear resistance. 4. Induction hardening: Utilizing an induction coil, induction hardening is a localized technique for surface hardening. The steel is heated using the induction coil and then swiftly quenched, resulting in a hardened surface layer characterized by high hardness and enhanced wear resistance. 5. Flame hardening: Flame hardening is an alternative localized method for surface hardening. The steel surface is heated using a high-temperature flame and swiftly quenched. This technique generates a hardened surface layer with increased hardness and resistance to wear. 6. Laser hardening: Laser hardening is a precise and localized surface hardening technique. By employing a laser beam to heat the desired area of the steel, followed by rapid quenching, a hardened surface layer with enhanced mechanical properties is formed. By employing these surface hardening techniques, special steel can experience significant improvements in durability, strength, and resistance to wear and corrosion, making it highly suitable for diverse industrial applications. The selection of the most suitable technique is contingent upon factors such as the desired level of hardness, the complexity of the steel component, and the specific requirements of the application.
Q: What are the properties of free-cutting steel?
Free-cutting steel is characterized by its high machinability, which means it can be easily and efficiently machined into various shapes and sizes. It has excellent chip breaking properties, resulting in reduced tool wear and improved surface finish during machining operations. Free-cutting steel also has good formability, allowing it to be easily shaped and fabricated. Additionally, it exhibits high strength and good corrosion resistance, making it suitable for a wide range of applications in industries such as automotive, aerospace, and machinery manufacturing.
Q: How does special steel perform in high-temperature environments?
Special steel performs well in high-temperature environments due to its unique composition and properties. It exhibits excellent strength, resistance to corrosion, and high thermal stability, allowing it to maintain its integrity and structural performance even at elevated temperatures. This makes special steel a reliable and durable choice for applications that require withstanding extreme heat, such as in the aerospace, power generation, and automotive industries.
Q: What are the main characteristics of alloy steel forgings?
Alloy steel forgings possess several key characteristics that make them highly desirable in various industries. Firstly, alloy steel forgings are known for their exceptional strength and durability. The inclusion of different alloying elements, such as chromium, nickel, molybdenum, and vanadium, enhances the steel's mechanical properties, making it resistant to wear, fatigue, and corrosion. Another important characteristic of alloy steel forgings is their versatility. These forgings can be customized to meet specific requirements, whether it be in terms of shape, size, or performance. This adaptability allows for the production of complex and intricate components that are often used in critical applications, such as aerospace, automotive, and oil and gas industries. Additionally, alloy steel forgings exhibit excellent heat resistance and can withstand extreme temperature fluctuations without losing their structural integrity. This property is particularly beneficial in applications where components are exposed to high temperatures or rapid temperature changes, such as gas turbines, boilers, and heat exchangers. Furthermore, alloy steel forgings offer superior machinability and weldability, making them easier to work with during the manufacturing process. This characteristic allows for precise shaping, forming, and machining of the forgings, enabling manufacturers to achieve intricate designs and tight tolerances. Lastly, alloy steel forgings are known for their cost-effectiveness. Despite their exceptional properties, alloy steel forgings can be produced in large quantities, resulting in economies of scale. This makes them a cost-efficient choice for various industries looking to balance performance, durability, and affordability. In summary, the main characteristics of alloy steel forgings are their exceptional strength, durability, versatility, heat resistance, machinability, weldability, and cost-effectiveness. These qualities make alloy steel forgings a preferred choice for applications requiring high-performance components that can withstand challenging conditions.
Q: What are the specific requirements for special steel used in the food processing industry?
The specific requirements for special steel used in the food processing industry are stringent due to the critical nature of the industry and the need for maintaining high levels of hygiene and safety. Some of the key requirements for special steel used in the food processing industry include: 1. Corrosion resistance: Special steel used in the food processing industry must have excellent corrosion resistance to withstand exposure to various food products, cleaning agents, and moisture. This helps in preventing contamination and ensures the longevity of the equipment. 2. Hygienic design: The steel used should have a smooth and non-porous surface to prevent the accumulation of food particles, bacteria, and other contaminants. It should be easy to clean and sanitize to maintain high levels of hygiene. 3. Non-reactivity: The steel should be non-reactive with food products to avoid any chemical reactions that may alter the taste or quality of the food. This requirement is particularly important for acidic or alkaline food items. 4. High temperature resistance: Food processing often involves high-temperature applications such as cooking, sterilization, and baking. Special steel used in the industry must have high-temperature resistance to ensure durability and prevent any adverse effects on the food or equipment. 5. Mechanical strength: The steel should have sufficient mechanical strength to withstand the stresses and strains associated with food processing operations. It should be able to withstand impacts, vibrations, and other mechanical forces without deformation or breakage. 6. Compliance with food safety regulations: Special steel used in the food processing industry must comply with relevant food safety regulations and standards. It should be free from harmful substances such as lead, cadmium, and other contaminants that can leach into the food. 7. Traceability: Special steel used in the industry should be traceable, with proper documentation and certification to ensure its origin and quality. This is essential for maintaining transparency and accountability in the supply chain. These specific requirements ensure that the special steel used in the food processing industry meets the highest standards of quality, hygiene, and safety, thus safeguarding the health of consumers and maintaining the integrity of the food products.
Q: What is the hardness of special steel?
The hardness of special steel can vary depending on the specific composition and heat treatment process, but it is generally known to be significantly harder than regular steel.
Q: How is special steel used in the production of turbine shafts?
Special steel is used in the production of turbine shafts because it possesses high strength, durability, and resistance to extreme temperatures and stress. These properties are essential for turbine shafts to withstand the demanding conditions in power generation turbines where they are subject to high rotational speeds and heavy loads. The use of special steel ensures the reliability and efficiency of turbine shafts, contributing to the overall performance and safety of the turbine system.
Q: What are the properties of low alloy steel?
Low alloy steel is characterized by its composition, which contains a smaller amount of alloying elements compared to other types of steel. These alloys typically include elements such as nickel, chromium, molybdenum, and vanadium. The properties of low alloy steel include increased strength, improved toughness and hardenability, better corrosion resistance, and enhanced wear resistance. Additionally, low alloy steel offers excellent weldability and malleability, making it suitable for various applications in industries such as automotive, construction, and manufacturing.
Q: What are the properties of boron steel?
Boron steel, also known as boron-alloyed steel, possesses several unique properties. It is exceptionally strong and has a high tensile strength, making it ideal for applications that require high-strength materials. Boron steel also exhibits good hardenability, meaning it can be hardened by heat treatment processes such as quenching and tempering. Additionally, it has excellent wear resistance and is often used in the manufacturing of cutting tools and wear-resistant components. Moreover, boron steel offers good weldability and formability, allowing it to be easily shaped and joined. Overall, the properties of boron steel make it a valuable material in various industries, including automotive, construction, and tool manufacturing.

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

Hot products


Hot Searches

Related keywords