Recarburizer updated material for iron melting foundry
- Loading Port:
- Dalian
- Payment Terms:
- TT OR LC
- Min Order Qty:
- 10 m.t
- Supply Capability:
- 500000 m.t/month
OKorder Service Pledge
OKorder Financial Service
You Might Also Like
Specifications:
The chemical composition is pure: high carbon, low sulfur, tiny nitrogen, slightly less harmful impurity.
The carburant has excellent features of high carbon, low sulfur, low nitrogen and little impurity. This product is used in casting, can significantly increase the amount of scrap steel, reduce the pig iron dosage or do not use pig iron. At present most recarburizer are suitable for electric furnace smelting, also have a few special recarburizer with fast absorption rate is used in cupola furnace.
Data Sheet:
Product Num. | Fix carbon (mix) | Sulphur (max) | Ash (max) | Volatile Matter(max) | Moisture (max) | Grain size
| Nitrogen (max) |
GH-CA-01 | 99.00% | 0.03% | 0.50% | 0.50% | 0.50% | 0.15-5mm | 300ppm |
GH-CA-02 | 98.50% | 0.06% | 0.80% | 0.70% | 0.50% | 0.15-5mm | 300ppm |
- Q: How does carbon impact the availability of clean water resources?
- Carbon can have a significant impact on the availability of clean water resources. One of the main ways carbon affects water resources is through its contribution to climate change. Increased carbon emissions, mainly from the burning of fossil fuels, lead to higher global temperatures and disrupt the water cycle. As a result, some regions may experience more frequent and severe droughts, while others face increased rainfall and flooding events. Climate change also affects the melting of glaciers and snowpacks, which are crucial sources of freshwater for many communities. As carbon emissions warm the planet, glaciers and snowpacks melt at an accelerated rate, leading to reduced water supply in rivers and streams that rely on this natural storage. This can ultimately result in water scarcity and affect not only drinking water availability but also agricultural irrigation and industrial water usage. Furthermore, carbon pollution can also impact the quality of water resources. Carbon dioxide dissolves in water and reacts with it, leading to a decrease in pH levels and increased acidity. This phenomenon, known as ocean acidification, is particularly harmful to marine ecosystems and organisms that rely on carbonate ions to build their shells or skeletons. As these organisms struggle to survive, it can disrupt the balance of entire aquatic ecosystems, which in turn affects the availability of clean water resources. Moreover, carbon-based pollutants from human activities, such as industrial processes or agricultural runoff, can contaminate water sources. For example, carbon-based chemicals like pesticides, fertilizers, and hydrocarbons can infiltrate groundwater or get washed into rivers and lakes, compromising their quality and making them unsuitable for drinking or other uses. Overall, the impact of carbon on the availability of clean water resources is multifaceted. It affects the quantity of water through changes in the water cycle, reduces the quality of water through acidification and pollution, and disrupts ecosystems that rely on water resources. Addressing carbon emissions and mitigating climate change is crucial to protect and ensure the availability of clean water for present and future generations.
- Q: Want advanced reinforcement, but I do not know where the high furnace rock carbon, looking for someone to guide...
- Before the mall has sold, now you can see
- Q: Appearance, hardness, electrical conductivity, use of carbon 60
- C60 is a molecule composed of 60 carbon atoms in the molecule, it is like football, so also known as footballene (C60. This material is composed of C60 molecules, rather than by the atoms.) C60 is simply made of carbon atoms with stable molecules, it has 60 vertices and 32 sides. The 12 is Pentagon and 20 hexagon. Its molecular weight is about 720.
- Q: How is carbon used in the electronics industry?
- The electronics industry utilizes carbon in various ways. Carbon is commonly used to produce carbon-based materials like carbon nanotubes and graphene, which have distinctive properties that make them ideal for electronic devices. Carbon nanotubes, for instance, are cylindrical structures formed by arranging carbon atoms in a tube-like fashion. They possess excellent electrical conductivity, thermal conductivity, and mechanical strength. These attributes make them valuable in electronic applications such as transistors, sensors, and batteries. By using carbon nanotubes, smaller and more efficient electronic components can be created, resulting in smaller, faster, and more powerful devices. On the other hand, graphene is a single layer of carbon atoms arranged in a two-dimensional lattice. It exhibits exceptional conductivity of electricity and heat, as well as remarkable mechanical strength. These properties make it suitable for applications like flexible displays, touchscreens, and energy storage devices. The use of graphene-based electronics has the potential to revolutionize the industry by enabling the integration of flexible and transparent devices into various surfaces and objects. Moreover, carbon is employed in the production of carbon-based resistors and electrodes. Carbon resistors are commonly used in electronic circuits to regulate the flow of current. They provide stable and predictable resistance, ensuring the proper functioning of electronic devices. Carbon electrodes, on the other hand, enable the flow of electrical charge in batteries, fuel cells, and capacitors. Additionally, carbon plays a crucial role in the manufacturing of printed circuit boards (PCBs), which are essential components in electronic devices. PCBs provide a platform for interconnecting various electronic components. Carbon is utilized as a conductive ink in the fabrication of PCBs, allowing for the creation of intricate circuit patterns. In conclusion, carbon is an indispensable element in the electronics industry. Its unique properties enable the development of advanced materials and components that enhance the performance and functionality of electronic devices. From carbon nanotubes and graphene to resistors and electrodes, carbon-based materials are shaping the future of electronics by enabling smaller, faster, and more efficient devices.
- Q: What are the sources of carbon emissions?
- The sources of carbon emissions include burning fossil fuels (such as coal, oil, and natural gas) for electricity, transportation, and industrial processes, as well as deforestation and land-use changes.
- Q: How is carbon used in the production of lubricants?
- Carbon is used in the production of lubricants in several ways. One of the primary uses of carbon in lubricant production is as a base oil. Carbon-based molecules such as mineral oils, synthetic oils, and vegetable oils serve as the main component of lubricants. These oils are derived from crude oil or synthesized from other carbon-rich compounds. The carbon atoms in the base oil form long chains or rings, which provide excellent lubricating properties. These carbon chains or rings have a high viscosity, which reduces friction between moving parts. This helps to minimize wear and tear, heat generation, and energy loss in various mechanical systems. Carbon is also used in the production of additives for lubricants. These additives are incorporated into the base oil to enhance its performance and provide additional benefits. For example, carbon-based additives such as graphite and molybdenum disulfide can provide superior lubrication under extreme pressures and temperatures. They form a protective layer on the surface of moving parts, reducing friction and preventing metal-to-metal contact. Furthermore, carbon-based additives can also improve the oxidation resistance and anti-wear properties of lubricants. By incorporating carbon molecules with specific functional groups, lubricants gain the ability to form a protective film on metal surfaces, preventing corrosion and extending the lifespan of the machinery. In summary, carbon is a crucial element in the production of lubricants. It serves as the base oil, providing viscosity and lubricating properties, as well as an additive to enhance performance and protect machinery. Without carbon, the production of effective lubricants would not be possible.
- Q: What are carbon offsets?
- Carbon offsets are a mechanism used to help reduce greenhouse gas emissions and combat climate change. They are essentially a way for individuals, organizations, or businesses to compensate for their own carbon dioxide (CO2) emissions by investing in projects that reduce emissions elsewhere. The concept behind carbon offsets is based on the understanding that emissions reduction can be achieved in various ways and at different costs. Instead of solely focusing on reducing their own emissions, carbon offsetting enables individuals or entities to support projects that can achieve greater emission reductions per unit of cost. These projects can include renewable energy, energy efficiency, reforestation, and methane capture, among others. To acquire carbon offsets, individuals or organizations typically calculate their own carbon footprint by assessing the amount of CO2 they emit through their activities, such as energy consumption or transportation. After quantifying their emissions, they can purchase carbon offsets equivalent to the amount of CO2 they have emitted. These offsets are generated by projects that are independently verified and certified by recognized standards and registries. Once the carbon offsets are purchased, they are effectively canceled or retired, ensuring that the emissions reduction achieved by the project is not double-counted or claimed by someone else. By investing in carbon offsets, individuals or organizations can effectively neutralize their own emissions and contribute to global efforts to address climate change. However, it is important to note that carbon offsets should not be seen as a substitute for reducing emissions at the source. They should be used as a complementary tool to support emission reduction efforts, while simultaneously implementing measures to minimize our own emissions through energy efficiency, renewable energy adoption, and sustainable practices.
- Q: What is carbon fiber reinforced polymer?
- Combining carbon fibers with a polymer matrix creates a composite material known as carbon fiber reinforced polymer (CFRP). This material is both strong and lightweight. Carbon fibers are thin and strong, consisting of carbon atoms bonded together in a crystalline structure. These fibers are integrated into a polymer matrix, typically made of epoxy resin, which serves to bind the fibers together and offer support. The resulting combination of carbon fibers and polymer matrix yields a material with a high strength-to-weight ratio, making it suitable for diverse applications. CFRP is recognized for its exceptional stiffness, strength, and resistance to corrosion and fatigue. It finds extensive use in aerospace, automotive, sports equipment, and other industries that require lightweight and high-performance materials. Due to its unique properties, CFRP presents an excellent alternative to conventional materials such as steel, aluminum, and fiberglass. It offers superior strength and durability while significantly reducing weight.
- Q: Rod box material, there is a kind of material called carbon fiber, who knows this material is good?
- This material is good. Carbon fiber is a new kind of fiber material with high strength and high modulus of carbon content of more than 95%. It is a flaky graphite, microcrystalline and other organic fibers stacked along the axial direction of the fiber, obtained by carbonization and graphitization of microcrystalline graphite material. Carbon fiber "an hand in a velvet glove lighter than aluminum," the quality, but the strength is higher than that of steel, and has the characteristics of corrosion resistance, high modulus, in the national defense and civilian areas are important materials. It has not only the intrinsic characteristics of carbon materials, but also the softness and processability of textile fibers. It is a new generation of reinforced fiber.
- Q: How does carbon dioxide affect the pH of soil?
- Carbon dioxide can lower the pH of soil by reacting with water to form carbonic acid, which increases the acidity of the soil.
Send your message to us
Recarburizer updated material for iron melting foundry
- Loading Port:
- Dalian
- Payment Terms:
- TT OR LC
- Min Order Qty:
- 10 m.t
- Supply Capability:
- 500000 m.t/month
OKorder Service Pledge
OKorder Financial Service
Similar products
Hot products
Hot Searches
Related keywords