• Recarburizer FC 95 of Graphitized Petroleum Coke System 1
  • Recarburizer FC 95 of Graphitized Petroleum Coke System 2
  • Recarburizer FC 95 of Graphitized Petroleum Coke System 3
  • Recarburizer FC 95 of Graphitized Petroleum Coke System 4
  • Recarburizer FC 95 of Graphitized Petroleum Coke System 5
Recarburizer FC 95 of Graphitized Petroleum Coke

Recarburizer FC 95 of Graphitized Petroleum Coke

Ref Price:
get latest price
Loading Port:
Qingdao
Payment Terms:
TT OR LC
Min Order Qty:
10 m.t
Supply Capability:
300000 m.t/month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Recarburizer Application:


- Lower the impurities in the cast iron, 

- Choose the right recarburizer can lower the casting cost. 

- Recarburizer is essential auxiliary additives for production of high quality steel .

- Also it can can be used as additive for produce other product like brake pad used as friction materials; 

- High quality recarburizer is after graphitizing process,under high temperature,the arrangement of carbon atoms in microstructure of graphite.

so call it graphitization ,graphitizing can lower the impurities in recarburizer, increase the carbon content, lower the sulfer content. 

 

Product categories:

 

At present China have 3 Type Recarburizer:

- Graphite powder ,the dust power of graphite electrode

- Calcined Petroleum Coke part of domestic steel factory use it as recarburizer.

- Graphitized Petroleum Coke ,as recarburizer used for steel casting




Q:14 is the upper left corner of the mark, please answer a bit more detailed, thank you!
Enter 14C, select "14", "point font" or "tool" button "superscript"".
Q:What should we do to reduce carbon emissions in our lives?
The use of public transport, of course, is best to walk long distances, as far as possible the use of roads or railways, aircraft carbon emissions, the largest use of disinfection chopsticks, do not use disposable tableware, handkerchiefs do not use napkins
Q:Can carbon 14 identify the age of porcelain?
Identification of porcelain by carbon 14 is not very accurate.The so-called carbon fourteen assay, radiocarbon dating, uses the carbon fourteen, which is widely found in nature, to measure the age of animals and plants. In prehistoric and ancient, the smaller the impact of human activities on the earth's environment, and carbon in nature fourteen proportions remain constant, animals and plants in the survival time, due to its in vivo The new supersedes the old. sake, carbon fourteen also remained constant; however, the once dead, in fourteen carbon will continue to decay, the half-life is 5730 years, in the sealed state and the outside world is obviously different, which is the principle of carbon fourteen dating. We must note that animals and plants belong to the organic matter. However, most cultural relics, such as porcelain, pottery and bronze, are inorganic. Therefore, the application of carbon fourteen dating in archaeology is very limited.
Q:What is carbon black used for?
Carbon black is primarily used as a pigment in various industries, such as rubber, plastics, printing inks, and coatings. It provides color, enhances durability, and improves the overall performance of the products it is incorporated into.
Q:How is carbon used in the production of nanoelectronics?
Carbon is used in the production of nanoelectronics in a variety of ways. One of the most prominent uses is in the fabrication of carbon nanotubes (CNTs), which are cylindrical structures made entirely of carbon atoms. These nanotubes have unique electrical and mechanical properties that make them ideal for use in nanoelectronic devices. CNTs can be utilized as transistors, which are the fundamental building blocks of electronic circuits. Due to their small size and excellent electrical conductivity, CNT transistors can be used to create high-performance, low-power devices. They have the potential to replace traditional silicon transistors and enable the development of more advanced and compact electronic devices. Carbon is also used in the production of graphene, which is a single layer of carbon atoms arranged in a two-dimensional honeycomb lattice. Graphene exhibits exceptional electrical conductivity, thermal conductivity, and mechanical strength. It can be used as a conductive material in nanoelectronics, enabling the development of faster and more efficient electronic devices. Furthermore, carbon-based materials can be utilized in nanoelectronics for energy storage purposes. For instance, carbon nanotubes and graphene can be used in supercapacitors, which are energy storage devices capable of storing and delivering large amounts of electrical energy quickly. These carbon-based energy storage systems have the potential to revolutionize the field of portable electronics and electric vehicles. In summary, carbon is extensively used in the production of nanoelectronics. Its unique properties, such as high electrical conductivity, mechanical strength, and thermal conductivity, make it an ideal material for the development of high-performance electronic devices. Carbon nanotubes, graphene, and other carbon-based materials are key components in the fabrication of nanoelectronic devices, enabling advancements in computing power, energy storage, and miniaturization of electronic components.
Q:Is badminton all good as carbon or aluminum carbon? Does carbon fiber on the Internet mean total carbon?
The badminton racket is different in texture. Mainly divided into titanium, carbon, aluminum, carbon fiber, aluminum alloy and pure iron, pure aluminum. Among them, the best material is titanium, followed by carbon, aluminum, carbon fiber, aluminum alloy and pure iron, pure aluminum. Related knowledge: before 70s, the material is almost entirely of wood and steel in the world, in 70s began to use Aluminum Alloy, now the world is completely new materials such as carbon fiber, titanium alloy, high strength carbon fiber and other materials because they are lighter, stronger, more durable and can absorb more vibration and shock, at the same time let the racket maker the hardness of the racket, ball, have more space to play ball on the performance design. When choosing the racket, best to look at this is what a racket made of material, usually in the racket racket rod and a racket frame will be labeled with the material, sometimes is the same as YONEX ISO-800TOUR High Modulus Graphite shot rod (high strength carbon fiber) frame also has the same mark, and some racket racket rod and frame material is not the same as: YONEX ISO-250LONG High Moudulus Graphite shot frame for Graphite (carbon fiber). Some also took pole, beat box made of the same material the labeled All Graphite or All Graphite racket only in a local frame or shaft. Sign formal products are accurate and reliable, and fake products marked is printed, it is generally used in relatively poor carbon cloth, compared the density, purity and regular products so large that the cost is very low.
Q:How is carbon involved in the metabolism of carbohydrates, proteins, and fats?
Carbon is a fundamental element involved in the metabolism of carbohydrates, proteins, and fats. In all three macronutrients, carbon atoms play a crucial role in the formation of their molecular structures. In carbohydrates, carbon is present in the form of glucose, which is the primary source of energy for the body. Through a process called glycolysis, glucose is broken down into smaller molecules, generating ATP (adenosine triphosphate) for cellular energy. The carbon atoms in glucose are rearranged and converted into intermediate compounds that are further used in other metabolic pathways. Proteins, on the other hand, are complex molecules composed of amino acids, each containing a carbon atom. During protein metabolism, carbon atoms participate in various reactions, such as deamination and transamination, which allow for the synthesis of new proteins or the breakdown of existing ones. Carbon atoms also contribute to the formation of peptide bonds that link amino acids together, forming the backbone of proteins. In the metabolism of fats or lipids, carbon is predominantly found in the fatty acid chains. These carbon chains provide a high-energy fuel source, as they can be broken down through a process called beta-oxidation. Carbon atoms from fatty acids are sequentially cleaved, producing acetyl-CoA, which enters the citric acid cycle (also known as the Krebs cycle) to generate ATP. Additionally, carbon atoms from fatty acids can be used for the synthesis of other molecules, such as cholesterol and hormones. Overall, carbon is an essential component in the metabolism of carbohydrates, proteins, and fats. Its involvement in these metabolic processes allows for the production of energy, the synthesis and breakdown of essential molecules, and the regulation of various physiological functions.
Q:How are carbon nanotubes produced?
Chemical vapor deposition (CVD) is the process responsible for the production of carbon nanotubes. This process utilizes a carbon-containing gas and a catalyst. The catalyst material, typically iron, nickel, or cobalt, is applied to a substrate. Subsequently, the substrate is placed in a high-temperature furnace, typically around 800-1000 degrees Celsius, and exposed to a carbon-containing gas, such as methane or ethylene. At high temperatures, the gas decomposes, releasing carbon atoms that adhere to the catalyst nanoparticles on the substrate. These carbon atoms arrange themselves in a hexagonal pattern, forming tube-like structures that grow vertically from the catalyst particles. The growth of the nanotubes is driven by the difference in carbon solubility between the catalyst and the growing tube. Various parameters, including temperature, gas flow rate, and catalyst material, can be adjusted to control the diameter, length, and alignment of the carbon nanotubes. Manipulating these parameters enables researchers to produce carbon nanotubes with specific characteristics suitable for different applications. It is important to note that other methods, such as arc discharge and laser ablation, can also be employed to produce carbon nanotubes. However, CVD is the most widely used method due to its scalability and ability to produce substantial quantities of nanotubes. Furthermore, CVD allows for the growth of vertically aligned nanotube arrays, which are highly sought after in numerous applications.
Q:What is carbon PC?
Polycarbonate (PC), polycarbonate is a molecular chain containing [O-R-O-CO] chain thermoplastic resin according to the molecular structure of the ester can be divided into aliphatic, alicyclic and aromatic type of fat, which has the practical value of the aromatic polycarbonate, and bisphenol A polycarbonate as the most important, molecular weight is usually 3-10 million.Polycarbonate, English Polycarbonate, referred to as PC.PC is a kind of amorphous, odorless, non-toxic, highly transparent colorless or slightly yellow thermoplastic engineering plastics, has excellent physical and mechanical properties, especially excellent shock resistance, tensile strength, bending strength, compressive strength and high creep; small size is stable; good heat resistance and low temperature resistance, mechanical properties, stability in a wide range of temperature dimensional stability, electrical properties and flame retardant properties, can be used for a long time at -60~120 deg.c; no obvious melting point, a molten state at 220-230 DEG C; the molecular chain rigidity, melt viscosity and high water absorption resin; small, small shrinkage, high precision, good dimensional stability, permeability of films is small; self extinguishing materials; stable to light, but not UV resistance, good weather resistance; oil resistance, acid and alkali resistance, no oxygen acid and amine, Ketones are soluble in chlorinated hydrocarbons and aromatic solvents. They are easy to cause hydrolysis and cracking in water for a long time. Because of their poor fatigue resistance, they are prone to stress cracking, poor solvent resistance and poor wear resistance
Q:Does anyone know what the definition of carbon storage is in ecology? Thank you
If there is no clear definition of books on carbon storage in the understanding of ecology of the individual usually refers to the separation of gaseous carbon dioxide from the atmosphere, through the process of ecology carbon fixed, this process mainly refers to the plants convert carbon dioxide into carbohydrates.In addition, there is now another implication: carbon stripping technology will be used to collect carbon dioxide from human emissions into the air separation of the ground floor storage.

1. Manufacturer Overview

Location
Year Established
Annual Output Value
Main Markets
Company Certifications

2. Manufacturer Certificates

a) Certification Name  
Range  
Reference  
Validity Period  

3. Manufacturer Capability

a)Trade Capacity  
Nearest Port
Export Percentage
No.of Employees in Trade Department
Language Spoken:
b)Factory Information  
Factory Size:
No. of Production Lines
Contract Manufacturing
Product Price Range

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

Hot products


Hot Searches

Related keywords