• Powmr Solar Inverter Grid Connected Solar PV Inverter 2200TL 2200W System 1
  • Powmr Solar Inverter Grid Connected Solar PV Inverter 2200TL 2200W System 2
  • Powmr Solar Inverter Grid Connected Solar PV Inverter 2200TL 2200W System 3
Powmr Solar Inverter Grid Connected Solar PV Inverter 2200TL 2200W

Powmr Solar Inverter Grid Connected Solar PV Inverter 2200TL 2200W

Ref Price:
get latest price
Loading Port:
Shekou
Payment Terms:
TT or LC
Min Order Qty:
10 unit
Supply Capability:
99999 unit/month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Grid Connected Solar PV Inverter  2200TL 2200W

 

High-yield of Solar PV Inverter  2200TL

 

Max 97.1%efficiency

Real timeprecise MPPT algorithm for max harvest

Wide inputvoltage operation range from 90V to 500V

 

All in one. Flexible and economicalsystem solution

Free siteselection due to IP65

Easy installationand maintenance due to “Plug & Play” connection

Interfaceselection-Wi-Fi/ RS485 / Dry Relay for more flexible

configurationandsystem monitoring

4” LCDdisplay

Low maintenance cost of PV inverter

Rust-freealuminumcovers

Flexiblemonitoring solution

Multifunctionrelay can be configured to show various inverter information

 

Intelligent grid management

Reactivepowercapability

Self powerreduce when over frequency

Remoteactive/reactivepower limit control


 

PV inverter datasheet

Technical Data

1100TL

1600TL

2200TL

2700TL

3000TL

Input (DC)

Max. Input Power

1100W

1600W

2200W

2700W

3000W

No. of MPPT / String per MPPT

1/1

Max. Input voltage

450V

450V

500V

500V

500V

Max. Input Voltage

80V

Rated input voltage

360V

Operating input voltage range

90V-400V

100V-480V

MPPT voltage range

110V-380V

165V-380V

170-450V

210-450V

230V-450V

Max. Input current per MPPT

10A

13A

Input short circuit current per MPPT

12A

15A

Output(AC)

Rated power(@230V,50Hz)

1000VA

1500VA

2000VA

2500VA

2800VA

Max. AC power

1000VA

1500VA

2000VA

2500VA

2800VA

Max. AC Output Current

4.5A

7A

9.5A

11.5A

13A

Rated Grid Voltage

230V

Nominal Grid Voltage Range

180V-270V(According to local standard)

Rated Frequency

50Hz / 60Hz

Grid frequency Range

44~55 / 54~66Hz(According to local  standard)

THDi

<3%

Power factor Adjustable Range

0.8 over excited … 0.8 under excited

Grid connection

Single phase

Efficiency

Max. efficiency

97%

97.1%

Weighted eff.(EU/CEC)

96%

96.2%

96.3%

MPPT efficiency

>99.5%

Standard

EMC

EN 61000-6-1, EN 61000-6-2, EN 61000-6-3,  EN 61000-6-4

RSSR

IEC 62109-1, IEC 62109-2

Grid Standards

AS4777, VDE4105, C10-C11, G83/G59 (more  available on request)

Protection

Anti-Islanding Protection

Yes

DC reverse polarity protection

Yes

Over Temp Protection

Yes

Leakage Current Protection

Yes

Over Voltage Protection

Yes

Over Current Protection

Yes

Earth Fault Protection

Yes

Communication

Standard Communication Mode

Wifi+RS485

Operation Data Storage

25 years

Relay

Yes

I/O

Yes

General data

DC Switch

optional

Ambient temperature range

-25℃ ~ +60℃

Topology

Transformerless

Cooling

Nature

Allowable relative humidity range

0 ~ 95% no condensing

Max. Operating Altitude

2000m

Noise

<35dB @1m

Degree of Protection

(per IEC 60529)

IP65

Dimension

400*310*130mm

Weight

11kg

12kg

Self-consumption at night

0

Display

Graphic display

Warranty

5 years



 

 

FAQ

 

1. Have any design tool and how to use it?

Shine Design is the system design software just for inverters, It can conduct installers to figure out panel numbers for a system, panel numbers for each string, and which inverter model is suitable for the system. Moreover, it can print a design report after input all necessary parameters, can calculate DC/AC wire wastage, annual generation, etc.

 

2. Does the inverter have monitoring solutions for residential system?

For small rating system, we have wired two monitoring solution (ShineNet via RS232 or RS485). (a) Local wireless monitoring solution (ShineVision via RF module communication) (b) Global wireless monitoring solution (WIFI module via WIFI network)

 

Q: What is the impact of temperature on the performance of a solar inverter?
The impact of temperature on the performance of a solar inverter is significant. As temperature increases, the efficiency of the inverter tends to decrease. This is because higher temperatures can lead to increased resistive losses, increased internal losses, and decreased power conversion efficiency. Additionally, overheating can cause the inverter to shut down or operate at reduced capacity to prevent damage. Therefore, it is important to consider temperature management and cooling strategies to optimize the performance and lifespan of a solar inverter.
Q: What are the different types of solar inverters?
There are three main types of solar inverters: string inverters, microinverters, and power optimizers.
Q: Can a solar inverter be used with a remote monitoring system?
Yes, a solar inverter can be used with a remote monitoring system. In fact, many modern solar inverters are designed to be compatible with remote monitoring systems. This allows users to monitor the performance and output of their solar system from a remote location, providing real-time data on energy production, system efficiency, and any potential issues or faults. Remote monitoring systems provide convenience, enable proactive maintenance, and help optimize the overall performance of solar installations.
Q: How does the power factor affect the performance of a solar inverter?
The power factor affects the performance of a solar inverter by determining the efficiency and quality of the electrical power being generated. A low power factor can lead to increased losses, reduced power output, and decreased overall system efficiency. It can also cause voltage fluctuations and increased stress on the inverter components. On the other hand, a high power factor ensures optimal utilization of power, improves system performance, and reduces energy wastage. Therefore, maintaining a high power factor is crucial for maximizing the performance and reliability of a solar inverter.
Q: What is the role of a maximum power point tracker in a solar inverter?
The role of a maximum power point tracker (MPPT) in a solar inverter is to optimize the energy harvesting efficiency of the solar panels. It continuously monitors the output voltage and current of the panels and adjusts the operating point to ensure maximum power extraction from the panels. By tracking the maximum power point, the MPPT allows the solar inverter to generate the highest possible energy output from the available sunlight, thus maximizing the overall system performance.
Q: Can a solar inverter be used with solar-powered desalination systems?
Yes, a solar inverter can be used with solar-powered desalination systems. A solar inverter is responsible for converting the direct current (DC) produced by solar panels into alternating current (AC) that is required for the operation of desalination systems. By integrating a solar inverter, solar energy can efficiently power the desalination process, making it a sustainable and eco-friendly solution for water purification.
Q: How does a solar inverter handle low light conditions or cloudy days?
A solar inverter handles low light conditions or cloudy days by continuously monitoring the incoming solar energy. When there is a decrease in sunlight, the inverter adjusts its voltage and current output to optimize the power conversion. This ensures that even under low light conditions, the inverter can still convert the available solar energy into usable electricity efficiently.
Q: What maintenance is required for a solar inverter?
Regular maintenance for a solar inverter typically includes visual inspections, cleaning, and ensuring proper ventilation. It is also important to monitor and clean the solar panels to prevent any shading or debris that could affect the overall performance of the inverter. Additionally, checking and tightening all electrical connections, as well as updating the firmware and software, may be necessary to ensure optimal functionality.
Q: How does a solar inverter interact with a battery storage system?
A solar inverter interacts with a battery storage system by converting the direct current (DC) electricity generated by the solar panels into alternating current (AC) electricity that can be used to power homes and businesses. It also manages the flow of electricity between the solar panels, the battery storage system, and the electrical grid. When the solar panels produce more electricity than is being used, the excess energy is stored in the battery system for later use. Conversely, when the solar panels do not generate enough electricity to meet the demand, the inverter draws power from the battery storage system to supplement the shortfall. This interaction ensures a continuous and reliable power supply from solar energy, even during periods of low sunlight or high energy demands.
Q: What are the different types of solar inverters available?
There are several types of solar inverters available, including string inverters, microinverters, and power optimizers. String inverters are the most common and are installed at a central location, converting the DC power generated by multiple solar panels into AC power. Microinverters, on the other hand, are installed on each individual solar panel, converting the DC power to AC power at the panel level. Power optimizers are similar to microinverters but work in conjunction with a string inverter, optimizing the power output of each panel before it reaches the inverter. Each type of inverter has its own advantages and suitability based on the specific solar installation requirements.

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

Hot products


Hot Searches

Related keywords