• Solar Inverter Charging Grid Tie PV Inverters 2700TL 2.7KW DC to AC Solar Inverter System 1
  • Solar Inverter Charging Grid Tie PV Inverters 2700TL 2.7KW DC to AC Solar Inverter System 2
  • Solar Inverter Charging Grid Tie PV Inverters 2700TL 2.7KW DC to AC Solar Inverter System 3
Solar Inverter Charging Grid Tie PV Inverters 2700TL 2.7KW DC to AC Solar Inverter

Solar Inverter Charging Grid Tie PV Inverters 2700TL 2.7KW DC to AC Solar Inverter

Ref Price:
get latest price
Loading Port:
Shekou
Payment Terms:
TT or LC
Min Order Qty:
10 unit
Supply Capability:
99999 unit/month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Grid Tie PV Inverters  2700TL 2.7kw DC to AC Solar Inverter

 

Solar inverter Datasheet

 

Technical Data

SOFAR

1100TL

SOFAR

1600TL

SOFAR

2200TL

SOFAR

2700TL

SOFAR

3000TL

Input (DC)

Max. Input Power

1100W

1600W

2200W

2700W

3000W

No. of MPPT / String per MPPT

1/1

Max. Input voltage

450V

450V

500V

500V

500V

Max. Input Voltage

80V

Rated input voltage

360V

Operating input voltage range

90V-400V

100V-480V

MPPT voltage range

110V-380V

165V-380V

170-450V

210-450V

230V-450V

Max. Input current per MPPT

10A

13A

Input short circuit current per MPPT

12A

15A

Output(AC)

Rated power(@230V,50Hz)

1000VA

1500VA

2000VA

2500VA

2800VA

Max. AC power

1000VA

1500VA

2000VA

2500VA

2800VA

Max. AC Output Current

4.5A

7A

9.5A

11.5A

13A

Rated Grid Voltage

230V

Nominal Grid Voltage Range

180V-270V(According to local standard)

Rated Frequency

50Hz / 60Hz

Grid frequency Range

44~55 / 54~66Hz(According to local  standard)

THDi

<3%

Power factor Adjustable Range

0.8 over excited … 0.8 under excited

Grid connection

Single phase

Efficiency

Max. efficiency

97%

97.1%

Weighted eff.(EU/CEC)

96%

96.2%

96.3%

MPPT efficiency

>99.5%

Standard

EMC

EN 61000-6-1, EN 61000-6-2, EN 61000-6-3,  EN 61000-6-4

RSSR

IEC 62109-1, IEC 62109-2

Grid Standards

AS4777, VDE4105, C10-C11, G83/G59 (more  available on request)

Protection

Anti-Islanding Protection

Yes

DC reverse polarity protection

Yes

Over Temp Protection

Yes

Leakage Current Protection

Yes

Over Voltage Protection

Yes

Over Current Protection

Yes

Earth Fault Protection

Yes

Communication

Standard Communication Mode

Wifi+RS485

Operation Data Storage

25 years

Relay

Yes

I/O

Yes

General data

DC Switch

optional

Ambient temperature range

-25℃ ~ +60℃

Topology

Transformerless

Cooling

Nature

Allowable relative humidity range

0 ~ 95% no condensing

Max. Operating Altitude

2000m

Noise

<35dB @1m

Degree of Protection

(per IEC 60529)

IP65

Dimension

400*310*130mm

Weight

11kg

12kg

Self-consumption at night

0

Display

Graphic display

Warranty

5 years

 

Inverter Advantages Introduction:

 

High-yield

Max 97.1%efficiency

Real timeprecise MPPT algorithm for max harvest

Wide inputvoltage operation range from 90V to 500V

 

2.7kw DC to AC Solar Inverter

Flexible and economicalsystem solution

Free siteselection due to IP65

Easy installationand maintenance due to “Plug & Play” connection

Interfaceselection-Wi-Fi/ RS485 / Dry Relay for more flexible

configurationandsystem monitoring

4” LCDdisplay

 

2.7kw DC to AC Solar Inverter Low maintenance cost

Rust-freealuminumcovers

Flexiblemonitoring solution

Multifunctionrelay can be configured to show various inverter information

 

Intelligent gridmanagement

Reactivepowercapability

Self powerreduce when over frequency

Remoteactive/reactivepower limit control

 

Packing information:


 

 

Q: What are the common maintenance requirements for a solar inverter?
Some common maintenance requirements for a solar inverter include regular cleaning to remove dust and debris, checking for loose connections or wiring issues, monitoring performance and output levels, and ensuring proper ventilation to prevent overheating. It is also important to keep an eye on the inverter's display for error messages or any signs of malfunctioning. Regular inspections and maintenance by a qualified technician are recommended to ensure optimal performance and longevity of the solar inverter.
Q: What is the role of a display interface in a solar inverter?
The role of a display interface in a solar inverter is to provide real-time information and control options to the user. It allows the user to monitor the performance of the solar inverter, such as its power output, voltage levels, and error status. The display interface also enables the user to adjust settings, configure parameters, and troubleshoot any issues that may arise. Overall, it serves as a user-friendly tool for managing and optimizing the operation of the solar inverter system.
Q: Are there any fire safety concerns associated with solar inverters?
Solar inverters do pose some fire safety concerns. Although they are not typically a fire hazard themselves, there are a few potential risks to be aware of. Firstly, if the solar inverter is installed incorrectly, it can cause electrical problems that may lead to a fire. To prevent this, it is essential to hire a qualified and certified professional who can ensure that all electrical connections are secure and meet the necessary standards. Secondly, if the solar inverter is located in an area that experiences high temperatures or excessive heat, there is a risk of overheating. Inverters generate heat as they convert direct current (DC) from solar panels into alternating current (AC) for use in homes or businesses. If the inverter is not adequately ventilated or is exposed to extreme heat, it can overheat and potentially ignite a fire. Furthermore, if the inverter is faulty or damaged, it can increase the risk of fire. Regular maintenance and inspections of the solar inverter can help identify any potential issues and ensure its safe operation. To address these fire safety concerns, it is crucial to adhere to proper installation guidelines, regularly inspect and maintain the inverter, and ensure it is in a well-ventilated location away from sources of excessive heat. It is also advisable to have a fire extinguisher nearby and establish a fire safety plan in case of emergencies.
Q: Can a solar inverter be used with a solar-powered electric gate system?
Yes, a solar inverter can be used with a solar-powered electric gate system. The solar inverter is responsible for converting the DC power generated by the solar panels into AC power, which is required to operate the electric gate system. This allows the solar energy to be utilized efficiently in powering the gate system.
Q: Can a solar inverter be used with solar-powered emergency backup systems?
Yes, a solar inverter can be used with solar-powered emergency backup systems. The solar inverter converts the direct current (DC) generated by the solar panels into alternating current (AC), which can be used to power various appliances and equipment during emergencies. This allows for the efficient utilization of solar energy stored in batteries to provide backup power when the grid is down.
Q: What is the role of a solar inverter in protecting the electrical grid?
The role of a solar inverter in protecting the electrical grid is to ensure the safe and efficient integration of solar power into the grid. It converts the direct current (DC) produced by solar panels into alternating current (AC) that is compatible with the grid. Additionally, solar inverters monitor and regulate the flow of electricity, providing grid stability by managing voltage and frequency fluctuations. They also incorporate safety mechanisms to disconnect from the grid in case of emergencies or grid disturbances, protecting both the solar system and the overall electrical grid.
Q: What is the role of a solar inverter in reactive power compensation during grid disturbances?
The role of a solar inverter in reactive power compensation during grid disturbances is to regulate and stabilize the flow of reactive power from the solar panels to the grid. During grid disturbances, such as voltage fluctuations or power imbalances, the inverter adjusts the reactive power output to maintain grid stability and improve power quality. By injecting or absorbing reactive power as needed, the solar inverter helps to maintain the grid voltage within acceptable limits and minimize disruptions in the power supply.
Q: What is the maximum DC input current that a solar inverter can handle?
The maximum DC input current that a solar inverter can handle varies depending on the specific model and capacity of the inverter. It is typically mentioned in the product specifications and can range from a few amps to several hundred amps.
Q: Can a solar inverter be used with building-integrated photovoltaics (BIPV)?
Yes, a solar inverter can be used with building-integrated photovoltaics (BIPV). In fact, a solar inverter is an essential component of any BIPV system as it converts the direct current (DC) generated by the BIPV panels into alternating current (AC) that can be used to power electrical devices in a building or fed back into the grid.
Q: Are there any maintenance requirements for a solar inverter?
Yes, solar inverters require regular maintenance to ensure optimal performance and longevity. This typically includes cleaning the unit and its surroundings to prevent dust buildup, checking for any loose connections or wiring issues, inspecting for physical damage, and monitoring the inverter's performance through regular system checks. Additionally, firmware updates and software upgrades may be necessary to enhance efficiency and address any potential issues.

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

Hot products


Hot Searches

Related keywords