Hot Rolled Steel Rebars for Concrete Reinforcing
- Loading Port:
- Tianjin
- Payment Terms:
- TT or LC
- Min Order Qty:
- 100 m.t.
- Supply Capability:
- 10000 m.t./month
OKorder Service Pledge
OKorder Financial Service
You Might Also Like
OKorder is offering Hot Rolled Steel Rebars for Concrete Reinforcing at great prices with worldwide shipping. Our supplier is a world-class manufacturer of steel, with our products utilized the world over. OKorder annually supplies products to African, South American and Asian markets. We provide quotations within 24 hours of receiving an inquiry and guarantee competitive prices.
Product Applications:
Hot Rolled Steel Rebars for Concrete Reinforcing are ideal for structural applications and are widely used in buildings, bridges, roads and other engineering construction. Big to highways, railways, bridges, culverts, tunnels, public facilities such as flood control, dam, small to housing construction, beam, column, wall and the foundation of the plate, deformed bar is an integral structure material..
Product Advantages:
OKorder's Hot Rolled Steel Rebars for Concrete Reinforcing are durable, strong, and wide variety of sizes.
Main Product Features:
· Premium quality
· Prompt delivery & seaworthy packing (30 days after receiving deposit)
· Can be recycled and reused
· Mill test certification
· Professional Service
· Competitive pricing
Product Specifications:
Standard | GB UK USA | HRB335 HRB400 HRB500 G460B, B500A, B500B,B500C GR40, GR60 | |
Diameter | 6mm,8mm,10mm,12mm,14mm,16mm,18mm,20mm, 22mm,25mm,28mm,32mm,36mm,40mm,50mm | ||
Length | 6M, 9M,12M or as required | ||
Invoicing | Actual or Theoretical Weight Basis as buyer’s request. | ||
Type | Hot rolled steel rebar |
Diameter(mm) | Section area (mm²) | Mass(kg/m) | Weight of 12m (kg) | Pcs/ton |
6 | 28.27 | 0.222 | 2.664 | 375.38 |
8 | 50.27 | 0.395 | 4.74 | 210.97 |
10 | 78.54 | 0.617 | 7.404 | 135.06 |
12 | 113.1 | 0.888 | 10.656 | 93.84 |
14 | 153.9 | 1.21 | 14.52 | 68.87 |
16 | 201.1 | 1.58 | 18.96 | 52.74 |
18 | 254.5 | 2.00 | 24 | 41.67 |
20 | 314.2 | 2.47 | 29.64 | 33.74 |
22 | 380.1 | 2.98 | 35.76 | 27.96 |
25 | 490.9 | 3.85 | 46.2 | 21.65 |
28 | 615.8 | 4.83 | 57.96 | 17.25 |
32 | 804.2 | 6.31 | 75.72 | 13.21 |
36 | 1018 | 7.99 | 98.88 | 10.43 |
40 | 1257 | 9.87 | 118.44 | 8.44 |
50 | 1964 | 15.42 | 185.04 | 5.40 |
FAQ:
Q1: Why buy Materials & Equipment from OKorder.com?
A1: All products offered byOKorder.com are carefully selected from China's most reliable manufacturing enterprises. Through its ISO certifications, OKorder.com adheres to the highest standards and a commitment to supply chain safety and customer satisfaction.
Q2: How many tons of steel products could be loaded in containers?
A2: Usually the steel products are delivered by bulk vessel because of the large quantity and the freight. However, there are no bulk vessel enter some seaports so that we have to deliver the cargo by containers. The 6m steel product can be loaded in 20FT container, but the quantity is changed according to the size, usually from 18tons to 25tons.
Q3: How soon can we receive the product after purchase?
A3: Within three days of placing an order, we will arrange production. The normal sizes with the normal grade can be produced within one month. The specific shipping date is dependent upon international and government factors, the delivery to international main port about 45-60days.
Images:
- Q:Can steel rebars be used in structures with high carbonation levels in concrete?
- No, steel rebars should not be used in structures with high carbonation levels in concrete as the carbonation process can lead to corrosion of the steel, compromising the structural integrity of the building.
- Q:What are the guidelines for ensuring proper concrete cover over steel rebars?
- The guidelines for ensuring proper concrete cover over steel rebars include: 1. Following the specified cover requirements mentioned in the structural design or building codes. 2. Ensuring that the rebars are placed at the correct depth within the concrete to achieve the desired cover. 3. Using appropriate spacers or chairs to maintain the required distance between the rebars and the formwork during concrete pouring. 4. Ensuring proper consolidation of the concrete to eliminate voids or air pockets around the rebars. 5. Regularly inspecting the concrete cover during construction and taking necessary measures to correct any deficiencies. 6. Protecting the rebars from corrosion by using high-quality concrete with appropriate additives and ensuring proper curing of the concrete. 7. Regular maintenance and inspection of the structure throughout its lifespan to ensure the concrete cover remains intact and provides adequate protection to the rebars.
- Q:What is the maximum spacing allowed between steel rebars in concrete slabs?
- The maximum spacing allowed between steel rebars in concrete slabs typically depends on various factors such as the thickness of the slab, the load it will bear, and the design requirements. However, as a general guideline, the maximum spacing is often specified to be around 3 times the slab thickness or 18 inches (whichever is less) to ensure proper reinforcement and structural integrity.
- Q:Are steel rebars suitable for use in earthquake-prone regions?
- Yes, steel rebars are suitable for use in earthquake-prone regions. Steel rebars are commonly used in the construction industry to reinforce concrete structures, making them stronger and more resistant to the forces generated by earthquakes. The ductile nature of steel allows it to absorb and distribute the energy produced during an earthquake, thereby reducing potential damage. Furthermore, steel rebars enhance the overall structural integrity of buildings, making them more capable of withstanding seismic activities. Additionally, steel rebars can be designed and installed in a way that meets seismic design codes and standards specific to earthquake-prone regions, ensuring the safety of the structures. Overall, steel rebars are an effective and reliable choice for reinforcing buildings in earthquake-prone regions.
- Q:Can steel rebars be used in concrete columns?
- Concrete columns can indeed incorporate steel rebars. In fact, it is a prevalent practice in the construction industry to reinforce concrete structures, including columns, with steel rebars. By embedding the rebars within the concrete mixture, the columns gain increased strength and durability. The primary purpose of incorporating rebars in concrete columns is to enhance their ability to withstand tension. Adding this additional tensile strength prevents the columns from cracking or failing when subjected to various loads and forces. The utilization of steel rebars in concrete columns is widely recognized and considered vital for maintaining the structural integrity and long-term viability of the columns.
- Q:How do steel rebars prevent the concrete from cracking under tension?
- Steel rebars prevent concrete from cracking under tension by providing reinforcement and increasing the tensile strength of the concrete. When the concrete undergoes tensile stress, which is the force that tends to pull it apart, the rebars distribute the stress across a larger area and absorb some of the tension. This helps to prevent the concrete from cracking by reducing the amount of stress applied to any one area and providing additional strength to withstand the forces acting upon it.
- Q:What are the environmental benefits of using steel rebars?
- Using steel rebars in construction projects has several environmental benefits. Firstly, steel is a highly recyclable material, which means that steel rebars can be reused or repurposed after their initial use. This reduces the demand for new steel production and decreases the amount of waste sent to landfills. Additionally, steel rebars have a longer lifespan compared to other construction materials, such as wood or concrete. This durability reduces the need for frequent replacements and repairs, thus reducing the environmental impact associated with production and transportation of new materials. Steel rebars also offer superior strength and stability, leading to more resilient structures. This helps in reducing the risk of structural failures or collapses, which can have devastating environmental consequences. By using steel rebars, the overall safety and longevity of buildings and infrastructure are enhanced, reducing the need for extensive reconstruction or demolition in the future. Furthermore, steel rebars are resistant to corrosion, which means that they require less maintenance and upkeep over time. This reduces the use of chemicals and resources typically needed for maintenance purposes, resulting in lower environmental impact. Lastly, steel rebars can be manufactured with a high percentage of recycled content. By utilizing recycled steel, the demand for new steel extraction and the associated environmental impacts, such as deforestation and habitat destruction, can be reduced. Overall, the use of steel rebars in construction projects offers several environmental benefits, including reduced waste generation, increased durability, enhanced structural safety, lower maintenance requirements, and decreased reliance on new steel production.
- Q:How do steel rebars affect the overall constructability of a project?
- The overall constructability of a project is greatly influenced by steel rebars. These rebars, also known as reinforcing bars, play a vital role in improving the strength, durability, and stability of concrete structures. They are essential in mitigating the tensile forces that concrete alone cannot bear, thereby increasing the overall load-bearing capacity of the structure. To begin with, steel rebars simplify the construction process by providing a framework for pouring and shaping concrete. They serve as a skeletal structure that holds the concrete in place during the curing process, ensuring proper setting and desired shaping. This contributes to the efficiency of construction projects, allowing for faster concrete placement and reducing the risk of structural deformities. Furthermore, rebars enhance the structural integrity of the project. By reinforcing the concrete, they enhance its ability to resist cracking, bending, and breaking under different loads and environmental conditions. This added strength and resilience make the structure more durable and reduce the need for frequent repairs or maintenance, ultimately saving time and costs in the long term. In addition to strength and durability, steel rebars also contribute to the constructability of a project by enabling flexibility in design. Architects and engineers have the freedom to create complex and innovative structures, such as high-rise buildings, bridges, and tunnels, that require high load-bearing capacities. The versatility of rebars allows for the construction of structures with unique shapes, curves, and spans, expanding the possibilities of architectural design. Moreover, steel rebars facilitate constructability by enabling the construction of large-scale projects. They allow for the creation of reinforced concrete elements, such as columns, beams, and slabs, capable of supporting heavy loads and distributing them evenly throughout the structure. This capability is particularly crucial for projects that require significant weight-bearing capacity, such as industrial buildings or infrastructure projects. In conclusion, steel rebars have a profound impact on the constructability of a project. They simplify the construction process, enhance structural integrity, enable flexibility in design, and facilitate the construction of large-scale projects. By incorporating rebars into concrete structures, construction professionals can ensure that their projects are stronger, more durable, and better equipped to withstand various loads and environmental conditions.
- Q:What are the benefits of using stainless steel rebars?
- Some benefits of using stainless steel rebars include their high corrosion resistance, durability, and strength. Stainless steel rebars do not rust or corrode like traditional steel rebars, making them ideal for construction projects in areas with high humidity or exposure to corrosive elements. They also have a longer lifespan, reducing the need for frequent replacements and maintenance. Additionally, stainless steel rebars offer better structural integrity and can withstand higher loads, ensuring the longevity and safety of the structures they reinforce.
- Q:How do steel rebars affect the overall durability of marine structures?
- Steel rebars play a crucial role in enhancing the overall durability of marine structures. Due to their high tensile strength and corrosion resistance, steel rebars provide structural stability and prevent the degradation of marine structures caused by environmental factors such as saltwater, waves, and harsh weather conditions. One of the main challenges faced by marine structures is corrosion, as the constant exposure to saltwater can significantly weaken the structure over time. Steel rebars, often coated with anti-corrosive materials such as epoxy or galvanized coatings, act as a protective layer against corrosion. This coating prevents the penetration of saltwater and other corrosive agents, ensuring the longevity of the marine structure. Furthermore, steel rebars are known for their high tensile strength, which allows them to withstand the tremendous forces exerted by waves and currents. These rebars provide the necessary reinforcement to the concrete used in marine structures, preventing cracks or failure due to excessive loads. This reinforcement enhances the structural integrity of the marine structure, making it more resilient against external forces. Moreover, steel rebars offer flexibility in design and construction, allowing for the creation of complex and robust marine structures. With the ability to bend and shape rebars as needed, engineers can design structures that are better suited to withstand the unique challenges posed by the marine environment. This flexibility also facilitates the construction process, making it more efficient and cost-effective. Overall, steel rebars significantly contribute to the durability of marine structures by providing corrosion resistance, enhancing structural stability, and enabling innovative design solutions. Their presence ensures the longevity and reliability of marine structures, allowing them to withstand the harsh conditions of the marine environment for extended periods.
1. Manufacturer Overview |
|
---|---|
Location | |
Year Established | |
Annual Output Value | |
Main Markets | |
Company Certifications |
2. Manufacturer Certificates |
|
---|---|
a) Certification Name | |
Range | |
Reference | |
Validity Period |
3. Manufacturer Capability |
|
---|---|
a)Trade Capacity | |
Nearest Port | |
Export Percentage | |
No.of Employees in Trade Department | |
Language Spoken: | |
b)Factory Information | |
Factory Size: | |
No. of Production Lines | |
Contract Manufacturing | |
Product Price Range |
Send your message to us
Hot Rolled Steel Rebars for Concrete Reinforcing
- Loading Port:
- Tianjin
- Payment Terms:
- TT or LC
- Min Order Qty:
- 100 m.t.
- Supply Capability:
- 10000 m.t./month
OKorder Service Pledge
OKorder Financial Service
Similar products
Hot products
Hot Searches
Related keywords