• Eight mm Cold Rolled Steel Rebars with High Quality System 1
  • Eight mm Cold Rolled Steel Rebars with High Quality System 2
  • Eight mm Cold Rolled Steel Rebars with High Quality System 3
Eight mm Cold Rolled Steel Rebars with High Quality

Eight mm Cold Rolled Steel Rebars with High Quality

Ref Price:
get latest price
Loading Port:
Tianjin
Payment Terms:
TT or LC
Min Order Qty:
50 m.t.
Supply Capability:
15000 m.t./month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

1. Specifications of Eight mm Cold Rolled Steel Rebars with High Quality:

 

Name

Cold Rolled Steel Rebar

Diameter

6mm,8mm,10mm,12mm,14mm,16mm,18mm,20mm,

22mm,25mm,28mm,32mm,36mm,40mm,50mm

Length

6M, 9M,12M or as required

Price

Keep lower operating costs so as to offer competitive price for our clients

Label

to be specified by customer, generally, each bundle has 1-2 labels

Application

Building, construction

Invoicing

Actual or Theoretical Weight Basis as buyer’s request.

 

2. Theoretical weight and section area of each diameter of Eight mm Cold Rolled Steel Rebars with High Quality as below for your information:

Diameter(mm)

Section area (mm²)

Mass(kg/m)

Weight of 12m (kg)

Pcs/ton

8

50.27

  0.395    4.74210.97

 

3. Packaging & Delivery of Eight mm Cold Rolled Steel Rebars with High Quality:

Packaging Detail: products are packed in bundle and then shipped by container or bulk vessel, deformed bar is usually naked strapping delivery, when storing, please pay attention to moisture proof. The performance of rust will produce adverse effect.

Each bundle weight: 2-3MT, or as required

Payment terms: TT payment in advance or Irrevocable LC at sight.

Trade terms :FOB, CFR, CIF

Delivery Detail: within 45 days after received advanced payment or LC.

 

4. FAQ:

Q1: Why buy Materials & Equipment from OKorder.com?

A1: All products offered byOKorder.com are carefully selected from China's most reliable manufacturing enterprises. Through its ISO certifications, OKorder.com adheres to the highest standards and a commitment to supply chain safety and customer satisfaction.

Q2: How do we guarantee the quality of our products?

A2: We have established an advanced quality management system which conducts strict quality tests at every step, from raw materials to the final product. At the same time, we provide extensive follow-up service assurances as required.

Q3: How soon can we receive the product after purchase?

A3: Within three days of placing an order, we will arrange production. The shipping date is dependent upon the quatity, how many sizes you want and the plan of production, but is typically 1 month to 2 month days from the beginning of production.

 

5. Images of Eight mm Cold Rolled Steel Rebars with High Quality:

Eight mm Cold Rolled Steel Rebars with High Quality

Eight mm Cold Rolled Steel Rebars with High Quality

 

Q: Can steel rebars be used in cold weather concreting?
Yes, steel rebars can be used in cold weather concreting. However, it is important to take necessary precautions and follow guidelines to ensure the rebars remain free from corrosion in low temperatures. Additionally, using proper construction techniques and allowing sufficient time for curing can help prevent any negative effects on the concrete due to cold weather conditions.
Q: What are the factors that affect the strength of steel rebars?
Several factors can affect the strength of steel rebars: 1. Composition: The composition of the steel bar plays a crucial role in determining its strength. Steel rebars typically have a carbon content ranging from 0.15% to 0.6%, which affects their hardness and strength. Other elements such as manganese, silicon, and sulfur can also impact the strength of the rebar. 2. Manufacturing process: The process used to manufacture steel rebars can influence their strength. The bars are generally made through hot rolling, which involves heating the steel billets to high temperatures and then passing them through rollers to shape them. The cooling rate during the manufacturing process can affect the internal microstructure of the bar, leading to variations in strength. 3. Size and shape: The size and shape of the rebar can affect its strength. Thicker and larger diameter rebars generally have higher strength capacities compared to thinner ones. Similarly, the shape of the rebar, whether it is a plain round bar or has deformations like ribs, can also impact its strength. 4. Heat treatment: Certain heat treatment processes can be applied to steel rebars to enhance their strength. For example, quenching and tempering involve heating the rebar to a high temperature and then rapidly cooling it to increase its strength and hardness. The specific heat treatment process used will depend on the desired strength requirements. 5. Corrosion: Corrosion can significantly reduce the strength of steel rebars over time. When exposed to moisture and oxygen, steel rebars can rust, leading to structural degradation. Proper corrosion protection measures, such as epoxy coating or galvanization, can help maintain the strength and durability of the rebars. 6. Loading conditions: The strength of steel rebars can be influenced by the type and magnitude of the applied loads. Different applications require rebars with varying strength capacities. The design and engineering of structures should consider the expected loads to determine the appropriate strength of the rebars used. Overall, the strength of steel rebars is influenced by their composition, manufacturing process, size and shape, heat treatment, corrosion protection, and the loading conditions they will be subjected to. It is essential to consider these factors when selecting and using steel rebars in construction projects.
Q: Can steel rebars be used in road or highway construction?
Yes, steel rebars can be used in road or highway construction. They are commonly used to reinforce and strengthen concrete structures, including roads and highways, to enhance their durability and load-bearing capacity. Steel rebars provide stability and prevent cracking or breaking under heavy traffic loads, making them an essential component in road and highway construction.
Q: Are steel bars used more in high-rise buildings or steel?
The shear wall structure is used in many round bars, such as vertical wall bars, horizontal bars, steel bars and stirrups. Note that only general structures are concerned.
Q: How are steel rebars installed in concrete slabs?
The process of reinforcing concrete slabs involves the installation of steel rebars. These rebars are placed in a specific pattern within the concrete slab to provide additional strength and support. To begin, the area where the concrete slab will be poured is prepared by excavating and leveling the ground. A layer of compacted gravel or crushed stone, known as the base, is then placed to create a stable foundation. Once the base is in place, the rebars are positioned within the slab according to the desired locations. Typically, they are arranged in a grid-like pattern, with horizontal rebars placed parallel to each other and vertical rebars placed perpendicular to the horizontal ones. The spacing and diameter of the rebars depend on the design requirements and load capacity. To ensure proper positioning, plastic bar supports or chairs are used to lift the rebars off the ground and hold them in place. Additionally, the rebars are tied together at the intersections using wire or metal ties to maintain their relative positions during the concrete pouring process. After the rebars are properly positioned, the concrete is poured over them. The concrete mixture is carefully spread evenly across the entire area of the slab, fully encasing the rebars. Vibrating tools may be utilized to eliminate air bubbles and consolidate the concrete around the rebars. Once the concrete is poured, it is left to cure and harden. During this time, the rebars provide reinforcement, increasing the strength and load-bearing capacity of the slab. Once fully cured, the concrete slab with embedded rebars becomes a durable and structurally sound element capable of withstanding various loads and stresses. In conclusion, the installation of steel rebars in concrete slabs involves positioning them in a grid-like pattern and pouring the concrete over them. This reinforcing process enhances the strength and durability of the slab, making it suitable for a wide range of applications.
Q: How do steel rebars provide strength to concrete structures?
Steel rebars provide strength to concrete structures by acting as reinforcement. When embedded within the concrete, rebars enhance its tensile strength, which is otherwise low. As concrete is strong in compression but weak in tension, the rebars resist the tensile forces that can cause cracking or failure in the structure. By distributing and absorbing these tensile forces, steel rebars increase the overall strength, durability, and structural integrity of the concrete.
Q: Are steel rebars resistant to termites and other pests?
No, steel rebars are not resistant to termites and other pests.
Q: How do steel rebars contribute to the sustainability of a building?
There are several ways in which steel rebars contribute to the sustainability of a building. To begin with, the utilization of steel rebars in reinforced concrete structures enhances the overall strength and durability of the building, thus extending its lifespan. This, in turn, reduces the frequency of repairs or replacements, resulting in less material consumption and waste generation over time. Moreover, steel rebars are manufactured from recycled materials, with a significant proportion being derived from scrap metal. This helps to decrease the demand for new steel production, which is an energy-intensive process and contributes to carbon emissions. By making use of recycled steel rebars, buildings can significantly reduce their carbon footprint and conserve natural resources. Furthermore, steel rebars aid in improving the structural integrity of the building, making it more resistant to various external forces such as earthquakes, hurricanes, and other natural disasters. This increased resilience decreases the potential for catastrophic damage and the subsequent need for major reconstruction or demolition, thus saving both resources and costs. Additionally, the utilization of steel rebars allows for the construction of taller and more open spaces, enabling efficient use of the building's footprint. This is particularly relevant in urban areas where land availability is limited. By enabling the construction of taller buildings, steel rebars contribute to urban densification, which helps to reduce urban sprawl and preserve natural habitats. Lastly, steel rebars are highly recyclable at the end of their service life. When a building is demolished, the steel rebars can be easily extracted and recycled, avoiding the accumulation of construction waste in landfills. The recycling of steel rebars saves energy and reduces the need for extracting and processing new materials, further contributing to the sustainability of the construction industry. In conclusion, steel rebars play a crucial role in enhancing the sustainability of a building by increasing its durability, utilizing recycled materials, improving structural resilience, enabling efficient land use, and facilitating the recycling of materials at the end of a building's life cycle.
Q: Can steel rebars be used in composite construction systems?
Yes, steel rebars can be used in composite construction systems. Composite construction refers to the combination of different materials, typically concrete and steel, to create a stronger and more efficient structure. Steel rebars are commonly used as reinforcement in concrete structures, providing added strength and durability. In a composite construction system, steel rebars are embedded within the concrete, creating a bond between the two materials. This combination allows for the utilization of the compressive strength of concrete and the tensile strength of steel, resulting in a highly efficient and resilient structure. The use of steel rebars in composite construction systems offers several benefits. Firstly, it enhances the structural integrity of the construction by increasing its load-bearing capacity and resistance to external forces such as earthquakes or heavy loads. Additionally, steel rebars help to control cracking and improve the overall durability of the structure. Furthermore, steel rebars offer flexibility in design and construction. They can be easily shaped and placed according to the specific requirements of the structure, allowing for complex and intricate designs. Moreover, steel rebars can be prefabricated off-site, making the construction process more efficient and time-effective. In conclusion, steel rebars are a crucial component of composite construction systems. Their usage in combination with concrete provides numerous advantages, including increased strength, durability, and flexibility.
Q: Can steel rebars be used in structures subjected to chemical exposure?
Steel rebars can be used in structures subjected to chemical exposure, but their suitability depends on the specific type and concentration of chemicals involved. In general, stainless steel rebars or epoxy-coated rebars are preferred for such applications as they provide better resistance to corrosion and chemical attack compared to plain carbon steel rebars. However, it is important to conduct a thorough evaluation of the chemical environment and consult with experts to determine the most appropriate rebar material for the specific structure and its intended use.

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

Hot products


Hot Searches

Related keywords