Hot Rolled Steel Deformed Bar D-BAR HRB400/HRB500/B500B/B500C/GR40/R60
- Loading Port:
- Tianjin
- Payment Terms:
- TT OR LC
- Min Order Qty:
- 25 m.t.
- Supply Capability:
- 50000 m.t./month
OKorder Service Pledge
OKorder Financial Service
You Might Also Like
Specification
Product Description:
OKorder is offering Hot Rolled Steel Deformed Bar D-BAR HRB400/HRB500/B500B/B500C/GR40/R60 at great prices with worldwide shipping. Our supplier is a world-class manufacturer of steel, with our products utilized the world over. OKorder annually supplies products to European, North American and Asian markets. We provide quotations within 24 hours of receiving an inquiry and guarantee competitive prices.
Product Applications:
Hot Rolled Steel Deformed Bar D-BAR HRB400/HRB500/B500B/B500C/GR40/R60 are ideal for structural applications and are widely used in the construction of buildings and bridges, and the manufacturing, petrochemical, and transportation industries.
Product Advantages:
OKorder's Hot Rolled Steel Deformed Bar D-BAR HRB400/HRB500/B500B/B500C/GR40/R60 are durable, strong, and resist corrosion.
Main Product Features:
· Premium quality
· Prompt delivery & seaworthy packing (30 days after receiving deposit)
· Corrosion resistance
· Can be recycled and reused
· Mill test certification
· Professional Service
· Competitive pricing
Product Specifications:
deformed steel bar grade 40
material: HRB400, BS4449 GR460B
size: 8-36mmx12m.
short delivery time with bulk or container
packing: Mill standard export packing in bundles/coil, around 2tons/bundle.
country of Origin: China
delivery Time: Within a 35 days
Shipment: by bulk vessel or by container
Standard | GB | HRB400 | |
Diameter | 6mm,8mm,10mm,12mm,14mm,16mm,18mm,20mm, 22mm,25mm,28mm,32mm,36mm,40mm,50mm | ||
Length | 6M, 9M,12M or as required | ||
Place of origin | Hebei, China mainland | ||
Advantages | exact size, regular package, chemical and mechanical properties are stable. | ||
Type | Hot rolled deformed steel bar | ||
Brand name | DRAGON |
Usage and Applications of HRB400 Deformed Steel Bar:
Deformed bar is widely used in buildings, bridges, roads and other engineering construction. Big to highways, railways, bridges, culverts, tunnels, public facilities such as flood control, dam, small to housing construction, beam, column, wall and the foundation of the plate, deformed bar is an integral structure material. With the development of world economy and the vigorous development of infrastructure construction, real estate, the demand for deformed bar will be larger and larger..
Packaging & Delivery of HRB400 Deformed Steel Bar:
Packaging Detail: products are packed in bundle and then shipped by container or bulk vessel, deformed bar is usually naked strapping delivery, when storing, please pay attention to moisture proof. The performance of rust will produce adverse effect.
Each bundle weight: 2-3MT, or as required
Payment term: TT or L/C
Delivery Detail: within 45 days after received advanced payment or LC.
Label: to be specified by customer, generally, each bundle has 1-2 labels
Trade terms: FOB, CFR, CIF
FAQ:
Q1: Why buy Materials & Equipment from OKorder.com?
A1: All products offered byOKorder.com are carefully selected from China's most reliable manufacturing enterprises. Through its ISO certifications, OKorder.com adheres to the highest standards and a commitment to supply chain safety and customer satisfaction.
Q2: How do we guarantee the quality of our products?
A2: We have established an advanced quality management system which conducts strict quality tests at every step, from raw materials to the final product. At the same time, we provide extensive follow-up service assurances as required.
Q3: How soon can we receive the product after purchase?
A3: Within three days of placing an order, we will begin production. The specific shipping date is dependent upon international and government factors, but is typically 7 to 10 workdays.
Q4: What makes stainless steel stainless?
A4: Stainless steel must contain at least 10.5 % chromium. It is this element that reacts with the oxygen in the air to form a complex chrome-oxide surface layer that is invisible but strong enough to prevent further oxygen from "staining" (rusting) the surface. Higher levels of chromium and the addition of other alloying elements such as nickel and molybdenum enhance this surface layer and improve the corrosion resistance of the stainless material.
Q5: Can stainless steel rust?
A5: Stainless does not "rust" as you think of regular steel rusting with a red oxide on the surface that flakes off. If you see red rust it is probably due to some iron particles that have contaminated the surface of the stainless steel and it is these iron particles that are rusting. Look at the source of the rusting and see if you can remove it from the surface.
Images:
- Q: What are the guidelines for inspecting and testing steel rebars on-site?
- To ensure the structural integrity and safety of a construction project, it is essential to conduct on-site inspections and tests on steel rebars. Here are some guidelines to consider: 1. Begin with a visual inspection, checking for any visible defects such as rust, cracks, or deformities. Also, ensure that the rebars' size, shape, and alignment comply with the project's specifications and standards. 2. Keep accurate documentation of the rebars, including their origin, grade, and dimensions. This information will help track compliance with the project's requirements and identify any potential issues. 3. Take representative samples from each batch of rebars for further testing. The number of samples required may vary depending on the project's specifications and regulatory requirements. 4. Verify compliance with the project's requirements by measuring the rebars' length, diameter, and shape. Ensure that they are within the permissible limits and not bent or twisted excessively. 5. Conduct a chemical composition analysis to ensure that the rebars meet the specified standards. This analysis typically involves testing for elements like carbon, sulfur, phosphorus, and manganese. 6. Determine the rebars' mechanical properties through tensile and yield strength tests. This testing helps ensure that the rebars can withstand the expected loads and stresses during construction. 7. Assess the rebars' ductility and ability to withstand bending without fracture or significant deformation through a bend test. This test is particularly important for rebars used in reinforced concrete structures. 8. Use ultrasonic testing techniques to detect any internal defects that may affect the rebars' performance. These defects, such as voids, cracks, or inclusions, may not be visible to the naked eye. 9. Evaluate the rebars' resistance to corrosion, especially in moisture or chemically exposed environments. This assessment may involve techniques such as measuring corrosion potential or analyzing chloride content. 10. Keep comprehensive records of all inspection and testing activities, including test results and any deviations from the project's specifications. This documentation acts as evidence of compliance and aids in future audits or quality control checks. It is important to note that these guidelines provide a general framework for on-site inspection and testing of steel rebars. Always refer to specific project requirements, industry standards, and local regulations for a more detailed and accurate procedure.
- Q: Can steel rebars be used in structures with high chloride exposure?
- No, steel rebars should not be used in structures with high chloride exposure as it can lead to corrosion and structural damage over time.
- Q: How are steel rebars protected from concrete spalling?
- Various methods and techniques are utilized to safeguard steel rebars from concrete spalling. One commonly employed approach involves the application of a concrete cover over the rebars. This entails embedding the rebars within the concrete structure to prevent direct exposure to external elements or conditions that may lead to spalling. To ensure adequate protection, construction codes and standards typically prescribe the thickness of the concrete cover. Another means of shielding steel rebars from concrete spalling is the use of corrosion inhibitors. These inhibitors are typically incorporated into the concrete mix during construction. They function by reducing the rate of corrosion for the steel rebars, effectively safeguarding them against spalling caused by rusting and corrosion. In addition to concrete cover and corrosion inhibitors, proper concrete mix design holds significant importance in protecting steel rebars. The utilization of high-quality concrete with an appropriate water-cement ratio, adequate strength, and suitable curing greatly enhances the concrete's resistance against spalling. This guarantees the secure embedding of the rebars within the concrete structure and shields them from moisture or other deteriorating agents that could lead to spalling. Furthermore, adhering to proper construction practices, such as thorough compaction of concrete, precise placement and alignment of rebars, and effective waterproofing measures, also contribute to the protection of steel rebars from concrete spalling. These practices help minimize the likelihood of moisture ingress and the formation of cracks or voids that could expose the rebars to the risk of spalling. In summary, a combination of concrete cover, corrosion inhibitors, appropriate concrete mix design, and sound construction practices are vital in safeguarding steel rebars from concrete spalling. By implementing these measures, the durability and lifespan of concrete structures can be significantly enhanced.
- Q: How are steel rebars connected to each other during construction?
- Steel rebars are connected to each other during construction using various methods such as overlapping, welding, or mechanical couplers.
- Q: What is the role of steel rebars in the construction of retaining walls?
- Steel rebars play a crucial role in the construction of retaining walls as they provide reinforcement and strength to the wall structure. They are embedded within the concrete to enhance its tensile strength and prevent cracking or collapsing under pressure. The rebars distribute the load evenly and help the retaining wall resist the lateral forces exerted by the soil or water behind it, ensuring stability and durability of the structure.
- Q: Can steel rebars be used in the construction of dams or reservoirs?
- Indeed, dams or reservoirs can utilize steel rebars in their construction. It is customary to employ steel rebars as reinforcement in concrete structures, such as dams and reservoirs, to bestow them with robustness and steadfastness. These rebars serve to evenly distribute and combat the tensile forces that may arise within these structures due to water pressure and external burdens. Steel rebars possess resistance to corrosion, durability, and commendable tensile strength, rendering them a perfect choice for such purposes. Moreover, their malleability and ease of installation grant flexibility in the design and construction phases.
- Q: Can steel rebars be used in soundproof structures?
- Steel rebars, although they can be utilized in soundproof structures, do not bear the sole responsibility for soundproofing. Their main purpose lies in reinforcing concrete structures like walls or floors. While they can somewhat assist in diminishing sound transmission, accomplishing effective soundproofing necessitates the use of supplementary materials and techniques. To establish a soundproof structure, various factors must be taken into account. One crucial aspect is the mass of the structure. Due to their weight and density, steel rebars augment the mass of the structure, thus aiding in reducing sound transmission. Nevertheless, the efficacy of soundproofing also relies on the overall design, construction techniques, and integration of other sound-absorbing materials. To heighten the soundproofing capabilities of a structure, additional materials can be incorporated, such as acoustic insulation, soundproofing panels, or resilient channels. Acoustic insulation materials like mineral wool or acoustic foam can be installed within the walls or floors to absorb sound waves and prevent their passage through the structure. Soundproofing panels can also be affixed to surfaces to either reflect or absorb sound waves, further diminishing noise transmission. Furthermore, proper construction techniques should be employed to ensure the absence of gaps or air leaks that may permit sound to travel through. The utilization of resilient channels, which isolate the structure from surrounding surfaces, can also aid in reducing sound transmission. In conclusion, while steel rebars can contribute to the soundproofing of a structure through the augmentation of its mass, they alone are inadequate for achieving a fully soundproof environment. Effective soundproofing necessitates a combination of design, construction techniques, and the integration of supplementary sound-absorbing materials to attain the desired level of sound reduction.
- Q: What is the role of steel rebars in dam construction?
- Steel rebars play a crucial role in dam construction as they provide the necessary reinforcement and strength to withstand the immense pressure and load exerted by water. They are used to reinforce the concrete structure of the dam, increasing its tensile strength and preventing cracks or failures. Additionally, rebars help distribute the stress uniformly throughout the dam, ensuring its stability and durability over time.
- Q: Are steel rebars prone to bending or warping?
- Steel rebars are not generally prone to bending or warping under normal conditions. Steel rebars are designed to have high tensile strength and are commonly used in construction projects to reinforce concrete structures. They are made from strong and durable materials such as carbon steel, which provides them with the ability to withstand heavy loads and resist deformation. However, it is important to note that external factors such as excessive heat or improper handling during transportation and storage can potentially cause rebars to bend or warp. Exposing steel rebars to high temperatures can cause them to lose their structural integrity and become more susceptible to bending or warping. Similarly, mishandling or poor storage practices, such as stacking them unevenly or placing heavy objects on top of them, can lead to deformation. To ensure the structural integrity of steel rebars, it is crucial to follow proper handling and storage guidelines, as well as ensure that they are used within the specified load limits. Additionally, it is essential to consider the environmental conditions in which the rebars will be utilized to minimize the risk of bending or warping.
- Q: How do steel rebars impact the overall construction cost estimation process?
- The overall construction cost estimation process is significantly influenced by steel rebars. These reinforcing bars play a crucial role in reinforced concrete structures, providing strength and durability to the building. Consequently, including them in the cost estimation is essential for accurately assessing the total project cost. To begin with, the material cost of the construction project is impacted by steel rebars. Rebars are typically priced based on weight, so the quantity and size of rebars required directly affect the material cost estimation. Accurately identifying and quantifying rebars is necessary to ensure an appropriate budget allocation for the project. Furthermore, labor cost estimation is also influenced by steel rebars. Skilled labor is required to install rebars, and the time and effort involved in cutting, bending, and placing the rebars must be taken into account. The complexity of the reinforcement design, such as intricate shapes or complex detailing, can increase labor costs. Therefore, accurately estimating rebars allows for better planning of labor resources and cost allocation. In addition to material and labor costs, steel rebars impact other aspects of the construction cost estimation process. For example, the weight and placement of rebars affect the structural design, which can influence the cost estimation of the concrete mix design and formwork requirements. The size and spacing of rebars may also impact the excavation and foundation costs, as well as the overall project timeline. Moreover, steel rebars contribute to the long-term costs of the construction project. The quality and durability of rebars directly affect the lifespan and maintenance requirements of the structure. Investing in high-quality rebars can reduce future maintenance and repair costs, as well as enhance the overall life cycle cost analysis of the project. To conclude, the overall construction cost estimation process is significantly impacted by steel rebars. Accurately estimating rebars is essential for determining material and labor costs, as well as influencing other cost-related aspects of the project. It allows for precise budget allocation, resource planning, and consideration of long-term costs, ultimately resulting in a more reliable and comprehensive construction cost estimation.
Send your message to us
Hot Rolled Steel Deformed Bar D-BAR HRB400/HRB500/B500B/B500C/GR40/R60
- Loading Port:
- Tianjin
- Payment Terms:
- TT OR LC
- Min Order Qty:
- 25 m.t.
- Supply Capability:
- 50000 m.t./month
OKorder Service Pledge
OKorder Financial Service
Similar products
Hot products
Hot Searches
Related keywords