Hot Rolled JIS Standard Equal Angle Steel Bars for Construction, Structu
- Loading Port:
- Tianjin
- Payment Terms:
- TT OR LC
- Min Order Qty:
- 25 m.t.
- Supply Capability:
- 200000 m.t./month
OKorder Service Pledge
OKorder Financial Service
You Might Also Like
Product Description:
OKorder is offering Hot Rolled JIS Standard Equal Angle Steel Bars for Construction, Structure at great prices with worldwide shipping. Our supplier is a world-class manufacturer of steel, with our products utilized the world over. OKorder annually supplies products to European, North American and Asian markets. We provide quotations within 24 hours of receiving an inquiry and guarantee competitive prices.
Product Applications:
Hot Rolled JIS Standard Equal Angle Steel Bars for Construction, Structure are ideal for structural applications and are widely used in the construction of buildings and bridges, and the manufacturing, petrochemical, and transportation industries.
1. Supporting members, most commonly in the house raising industry to strengthen timber bears under houses. Transmission line towers, etc
2. Prefabricated structure
3. Medium scale bridges
4. It is widely used in various building structures and engineering structures such as roof beams, bridges, transmission towers, hoisting machinery and transport machinery, ships, industrial furnaces, reaction tower, container frame and warehouse etc.
Product Advantages:
Hot Rolled JIS Standard Equal Angle Steel Bars for Construction, Structure are durable, strong, and resist corrosion.
Main Product Features:
· Premium quality
· Prompt delivery & seaworthy packing (30 days after receiving deposit)
· Corrosion resistance
· Can be recycled and reused
· Mill test certification
· Professional Service
· Competitive pricing
Product Specifications:
.Standards:GB,ASTM,BS,AISI,DIN,JIS
2.Invoicing on theoretical weight or actual weight as customer request
3.Material: JIS G3192,SS400;SS540.
4. Payment terms:
1).100% irrevocable L/C at sight.
2).30% T/T prepaid and the balance against the copy of B/L.
3).30% T/T prepaid and the balance against L/C
5.Sizes:
EQUAL ANGLES SIZES | |||
a(mm) | a1(mm) | thickness(mm) | length |
25 | 25 | 2.5---3.0 | 6M/12M |
30 | 30 | 2.5---4.0 | 6M/12M |
38 | 38 | 2.5 | 6M/12M |
38 | 38 | 3.0---5.0 | 6M/12M |
40 | 40 | 3.0---6.0 | 6M/12M |
50 | 50 | 3 | 6M/12M |
50 | 50 | 3.7---6.0 | 6M/9M/12M |
60 | 60 | 5.0---6.0 | 6M/9M/12M |
63 | 63 | 6.0---8.0 | 6M/9M/12M |
65 | 65 | 5.0---8.0 | 6M/9M/12M |
70 | 70 | 6.0---7.0 | 6M/9M/12M |
75 | 75 | 5.0---10.0 | 6M/9M/12M |
80 | 80 | 6.0---10.0 | 6M/9M/12M |
90 | 90 | 6.0---10.0 | 6M/9M/12M |
100 | 100 | 6.0---12.0 | 6M/9M/12M |
120 | 120 | 8.0-12.0 | 6M/9M/12M |
125 | 125 | 8.0---12.0 | 6M/9M/12M |
130 | 130 | 9.0-12.0 | 6M/9M/12M |
140 | 140 | 10.0-16.0 | 6M/9M/12M |
150 | 150 | 10---15 | 6M/9M/12M |
160 | 160 | 10---16 | 6M/9M/12M |
180 | 180 | 12---18 | 6M/9M/12M |
200 | 200 | 14---20 | 6M/9M/12M |
5. Material Specifications:
Grade | Yield Strength,N/mm² | Extension Strength N/mm² | |||
Thickness of Steel,mm | |||||
≦16 | >16-≦40 | >40-≦100 | >100 | ||
SS330 | ≧205 | ≧195 | ≧175 | ≧165 | 330-430 |
SS400 | ≧245 | ≧235 | ≧215 | ≧205 | 400-510 |
SS490 | ≧285 | ≧275 | ≧255 | ≧245 | 490-610 |
SS540 | ≧400 | ≧390 | - | - | ≧540 |
FAQ:
Q1: Why buy Materials & Equipment from OKorder.com?
A1: All products offered byOKorder.com are carefully selected from China's most reliable manufacturing enterprises. Through its ISO certifications, OKorder.com adheres to the highest standards and a commitment to supply chain safety and customer satisfaction.
Q2: How do we guarantee the quality of our products?
A2: We have established an advanced quality management system which conducts strict quality tests at every step, from raw materials to the final product. At the same time, we provide extensive follow-up service assurances as required.
Q3: How soon can we receive the product after purchase?
A3: Within three days of placing an order, we will begin production. The specific shipping date is dependent upon international and government factors, but is typically 7 to 10 workdays.
Q4: What makes stainless steel stainless?
A4: Stainless steel must contain at least 10.5 % chromium. It is this element that reacts with the oxygen in the air to form a complex chrome-oxide surface layer that is invisible but strong enough to prevent further oxygen from "staining" (rusting) the surface. Higher levels of chromium and the addition of other alloying elements such as nickel and molybdenum enhance this surface layer and improve the corrosion resistance of the stainless material.
Q5: Can stainless steel rust?
A5: Stainless does not "rust" as you think of regular steel rusting with a red oxide on the surface that flakes off. If you see red rust it is probably due to some iron particles that have contaminated the surface of the stainless steel and it is these iron particles that are rusting. Look at the source of the rusting and see if you can remove it from the surface.
- Q: Can steel angles be used in storage rack systems?
- Yes, steel angles can be used in storage rack systems. Steel angles provide strength and stability, making them suitable for supporting heavy loads in storage racks. They can be used to create the framework and support beams in the rack system, ensuring durability and safety.
- Q: Can steel angles be used for sound barriers?
- Yes, steel angles can be used for sound barriers. Steel angles are commonly used in construction and can be suitable for sound barrier applications due to their durability, strength, and ability to absorb and block sound.
- Q: How do you calculate the shear capacity of a steel angle?
- In order to determine the shear capacity of a steel angle, several factors must be taken into account. Firstly, the material properties must be considered. This involves determining the yield strength of the steel angle, which signifies the maximum stress the material can endure before permanent deformation occurs. Next, the cross-sectional area of the steel angle needs to be measured. This can be accomplished by calculating the width and thickness of the angle and multiplying them together. The shear stress applied to the angle can then be calculated by dividing the applied force by the cross-sectional area. To assess the shear capacity, the calculated shear stress is compared to the yield strength of the steel angle. If the shear stress is lower than the yield strength, the angle is deemed safe and capable of withstanding the applied force. Conversely, if the shear stress exceeds the yield strength, the angle may fail and deform. It should be noted that different design codes and standards may have specific equations or factors to be taken into consideration when determining the shear capacity of a steel angle. Therefore, it is advisable to consult the relevant design code or seek assistance from a structural engineer to ensure accurate and secure calculations.
- Q: How do you prevent rust on steel angles?
- To avoid rust on steel angles, there are several actions you can take: 1. Applying a protective coating is an effective method. You can choose to use paint, varnish, or other coatings that are resistant to corrosion. Make sure to select a coating specifically designed for preventing rust on steel surfaces. 2. Opt for galvanized steel angles. Galvanization involves applying a layer of zinc to the steel, creating a protective barrier against rust. This option greatly reduces the likelihood of rust formation. Galvanized steel angles are readily available and commonly used in outdoor applications. 3. Keep moisture at bay. Moisture accelerates rust formation, so it is crucial to keep steel angles dry. Avoid exposing them to rain, humid environments, or excessive moisture. If the angles are installed outdoors, ensure proper drainage and provide adequate ventilation to prevent moisture buildup. 4. Regularly clean and maintain the steel angles. This helps remove dirt, dust, and other contaminants that contribute to rust formation. Use a mild detergent or cleaning solution along with a soft cloth or sponge to clean the surface. After cleaning, ensure the angles are completely dry before applying any protective coating. 5. Monitor and repair damaged coatings. As time passes, protective coatings may become damaged due to wear and tear or exposure to harsh conditions. It is crucial to monitor the condition of the coatings and promptly repair any areas that are damaged. This will help maintain the integrity of the protective layer and prevent rust from forming. 6. Consider using stainless steel angles. Stainless steel contains chromium, which makes it highly resistant to rust and corrosion. If preventing rust is a top priority, you may want to consider using stainless steel angles instead of regular steel. Although stainless steel angles are typically more expensive, they offer superior durability and a longer lifespan. By implementing these preventive measures, you can significantly reduce the risk of rust formation on steel angles. This will ensure their longevity and help maintain their structural integrity.
- Q: How much is the weight of 40 * 3 angle steel theory?
- The angle iron can be made up of different force components according to the different structure, and can also be used as the connecting piece between the components. Widely used in a variety of architectural and engineering structures, such as beams, bridges, towers, hoisting and conveying machinery, ships, industrial furnace, reaction tower, container frame and warehouse.
- Q: How do steel angles perform in terms of fire resistance?
- Steel angles generally have good fire resistance due to the inherent properties of steel. Steel is a non-combustible material, meaning it does not burn or contribute to the spread of fire. Steel angles are often used in structural applications where fire protection is required, such as in building construction or industrial facilities. In the event of a fire, steel angles can withstand high temperatures without losing their structural integrity. This is because steel has a high melting point and does not weaken or deform easily under heat. Additionally, steel has a low thermal conductivity, meaning it does not transfer heat quickly, which further enhances its fire resistance. However, it is important to note that while steel angles have good fire resistance, they can still be affected by fire if exposed to extremely high temperatures for an extended period. In such cases, steel can experience significant thermal expansion and may eventually lose strength. Therefore, it is crucial to provide appropriate fire protection measures, such as fire-resistant coatings or fireproofing materials, to enhance the fire resistance of steel angles in critical applications. Overall, steel angles are considered to have favorable fire resistance properties and are widely used in various industries where fire protection is essential. However, proper fire safety measures should always be implemented to ensure the highest level of fire resistance and minimize any potential risks associated with fire exposure.
- Q: What are the different types of steel angle profiles?
- There exists a variety of steel angle profiles, each possessing distinct characteristics and uses. Here are some of the most prevalent types: 1. Equal angle: Designed with sides of equal length, this steel angle is predominantly employed for structural purposes, such as providing support for beams or framing. It ensures equal strength and stability in both directions, making it a popular choice in the construction and manufacturing sectors. 2. Unequal angle: This particular steel angle, as suggested by its name, features sides of unequal length. It finds common application in scenarios where enhanced strength is required in one direction, like supporting shelves or bracing components. Unequal angle profiles are also utilized in the construction of bridges and buildings. 3. L-shaped angle: This steel angle possesses one longer side, forming an L shape. It is commonly utilized as a support or bracket in various industries, including furniture manufacturing, automotive production, and construction. 4. Slotted angle: Slotted angle profiles are characterized by holes or slots along the angle's length, facilitating effortless attachment and adjustment of components. They are frequently employed in shelving units, workbenches, and storage systems, offering flexibility and versatility in design. 5. Stainless steel angle: Manufactured from corrosion-resistant steel, stainless steel angles are ideal for environments with moisture and harsh chemicals. They are commonly used in the food processing, pharmaceutical, and chemical industries. 6. Galvanized angle: Galvanized steel angles are coated with a protective layer of zinc, which prevents corrosion and rusting. They are extensively utilized in outdoor applications, such as fencing, signposts, and support structures, where exposure to weather elements is a concern. These are merely a few examples of the various steel angle profiles available, each offering specific advantages and applications based on project requirements.
- Q: How do you determine the resistance to lateral-torsional buckling of a steel angle?
- There are several factors that need to be taken into account when determining the resistance to lateral-torsional buckling of a steel angle. The primary factors that influence this resistance are the geometric properties of the angle section, the material properties of the steel, and the boundary conditions of the member. 1. Geometric properties: The resistance to lateral-torsional buckling is affected by critical geometric properties such as the length, width, thickness, and slenderness ratio of the angle section. The slenderness ratio, which is the ratio of the length to the radius of gyration of the section, is particularly important as it indicates the stability of the member. A higher slenderness ratio implies a greater susceptibility to lateral-torsional buckling. 2. Material properties: The resistance to lateral-torsional buckling also depends on the material properties of the steel angle. Factors such as the yield strength, modulus of elasticity, and the shape of the stress-strain curve play a significant role in determining the capacity of the steel angle to withstand bending and twisting moments without buckling. 3. Boundary conditions: The resistance to lateral-torsional buckling is significantly influenced by the boundary conditions of the steel angle. The type of support and the loading conditions both play a crucial role. The type of support, whether it is simply supported or fixed, determines the level of rotational and translational constraints on the member. Similarly, the applied loads, such as point loads, distributed loads, or moments, determine the bending and twisting moments that act on the angle section. To determine the resistance to lateral-torsional buckling, engineers typically refer to relevant design codes and standards, such as the AISC Manual or Eurocode. These codes provide design formulas and tables that take into consideration the geometric properties, material properties, and boundary conditions. They allow engineers to calculate the critical moment and corresponding resistance to lateral-torsional buckling for the steel angle. Additionally, advanced computer simulations, such as FEA software, can be used to obtain more accurate results by considering complex loadings and boundary conditions.
- Q: What are the alternatives to steel angles in construction?
- There are several alternatives to steel angles in construction that offer different advantages and disadvantages depending on the specific application. 1. Aluminum angles: Aluminum angles are lightweight and corrosion-resistant, making them a popular choice for outdoor construction projects. They are also easily machinable and have good electrical conductivity. However, aluminum angles may not have the same strength and load-bearing capacity as steel angles, making them less suitable for heavy-duty structural applications. 2. Fiberglass angles: Fiberglass angles are lightweight, non-conductive, and highly resistant to corrosion and chemical damage. They are commonly used in industries where exposure to harsh environments, such as water or chemicals, is a concern. However, fiberglass angles may not have the same strength as steel angles and may require additional reinforcement for heavy loads. 3. Carbon fiber angles: Carbon fiber angles are lightweight, high-strength, and have excellent resistance to corrosion. They are commonly used in applications where weight reduction is critical, such as aerospace and automotive industries. However, carbon fiber angles tend to be more expensive than steel angles and may require specialized manufacturing techniques. 4. Wood angles: Wood angles, typically made from hardwood or engineered wood products, are a traditional alternative to steel angles in construction. They are readily available, cost-effective, and easy to work with. Wood angles are often used in residential and light commercial construction projects. However, wood angles may not have the same strength and durability as steel angles and may be more prone to warping, cracking, or rotting over time. It's important to consider the specific requirements of the construction project, including the load-bearing capacity, environmental conditions, and budget, when choosing an alternative to steel angles. Consulting with a structural engineer or construction professional can help determine the most suitable option for each specific scenario.
- Q: What are the different methods of surface preparation for steel angles before painting?
- There are several methods of surface preparation for steel angles before painting. The choice of method depends on the condition of the steel surface and the desired level of paint adhesion and durability. One common method is abrasive blasting, also known as sandblasting. This involves propelling abrasive particles against the steel surface to remove rust, mill scale, and other contaminants. Abrasive blasting not only cleans the surface but also creates a rough profile, which improves the adhesion of the paint. Chemical cleaning is another method used to prepare steel angles for painting. It involves the use of chemical solutions or solvents to remove grease, oil, and other organic contaminants. This method is particularly useful for removing stubborn contaminants that cannot be removed by abrasive blasting alone. Mechanical cleaning methods, such as wire brushing or grinding, can be used to remove loose rust, scale, and old paint. These methods are suitable for smaller areas or localized rust spots. In some cases, power tool cleaning may be sufficient. This involves using power tools such as grinders, sanders, or wire brushes to clean the steel surface. However, it is important to ensure that these tools do not create a polished or smooth surface, as this can reduce paint adhesion. After the surface has been cleaned, it is important to remove any residual contaminants by using a solvent wipe or a clean cloth soaked in a suitable solvent. This step ensures that the surface is free from any remaining contaminants that could affect the paint adhesion. Finally, the steel angles should be primed before painting. A primer provides additional corrosion protection and enhances the adhesion of the topcoat. The choice of primer depends on the specific requirements of the project, such as exposure to harsh weather conditions or chemical exposure. Overall, the different methods of surface preparation for steel angles before painting include abrasive blasting, chemical cleaning, mechanical cleaning, power tool cleaning, solvent wiping, and priming. Selecting the appropriate method ensures that the paint adheres well to the steel surface and provides long-lasting protection against corrosion.
Send your message to us
Hot Rolled JIS Standard Equal Angle Steel Bars for Construction, Structu
- Loading Port:
- Tianjin
- Payment Terms:
- TT OR LC
- Min Order Qty:
- 25 m.t.
- Supply Capability:
- 200000 m.t./month
OKorder Service Pledge
OKorder Financial Service
Similar products
Hot products
Hot Searches