• Hot Rolled Deformed Steel Bar 12M Straight System 1
  • Hot Rolled Deformed Steel Bar 12M Straight System 2
Hot Rolled Deformed Steel Bar 12M Straight

Hot Rolled Deformed Steel Bar 12M Straight

Ref Price:
get latest price
Loading Port:
China main port
Payment Terms:
TT OR LC
Min Order Qty:
100 m.t.
Supply Capability:
100000 m.t./month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Usage and Applications

Deformed bar is widely used in buildings, bridges, roads and other engineering construction. Big to highways, railways, bridges, culverts, tunnels, public facilities such as flood control, dam, small to housing construction, beam, column, wall and the foundation of the plate, deformed bar is an integral structure material. With the development of world economy and the vigorous development of infrastructure construction, real estate, the demand for deformed bar will be larger and larger.

 

Diameter(mm)

Section area (mm²)

Mass(kg/m)

Weight of 12m bar(kg)

6

28.27

0.222

2.664

8

50.27

0.395

4.74

10

78.54

0.617

7.404

12

113.1

0.888

10.656

14

153.9

1.21

14.52

16

201.1

1.58

18.96

18

254.5

2.00

24

20

314.2

2.47

29.64

22

380.1

2.98

35.76

25

490.9

3.85

46.2

28

615.8

4.83

57.96

32

804.2

6.31

75.72

36

1018

7.99

98.88

40

1257

9.87

118.44

50

1964

15.42

185.04

 

Packaging & Delivery

Packaging Detail: products are packed in bundle and then shipped by container or bulk vessel, deformed bar is usually naked strapping delivery, when storing, please pay attention to moisture proof. The performance of rust will produce adverse effect.

Each bundle weight: 2-3MT, or as required

Payment term: TT or L/C

Delivery Detail: within 45 days after received advanced payment or LC.

Label: to be specified by customer, generally, each bundle has 1-2 labels

Trade terms: FOB, CFR, CIF

Cold Rolled Techniques

Yield Point: 545-565mpa

Deformed bar is widely used in buildings, bridges, roads and other engineering construction. Big to highways, railways, bridges, culverts, tunnels, public facilities such as flood control, dam, small to housing construction, beam, column, wall and the foundation of the plate, deformed bar is an integral structure material. With the development of world economy and the vigorous development of infrastructure construction, real estate, the demand for deformed bar will be larger and larger.

 

Q: What is the ductility of steel rebars?
The ductility of steel rebars refers to their ability to deform and stretch without breaking during tension or bending. Steel rebars are known for their excellent ductility, which allows them to absorb and dissipate energy when subjected to high loads or seismic forces. This property is essential in construction, as it ensures that the rebars can withstand extreme conditions and maintain structural integrity. The ductility of steel rebars also makes them suitable for various applications, such as reinforcing concrete structures and providing support in buildings, bridges, and other infrastructure projects.
Q: Are steel rebars suitable for use in industrial structures?
Yes, steel rebars are suitable for use in industrial structures. Steel rebars, also known as reinforcing bars, are commonly used in the construction industry to provide added strength and stability to concrete structures. They are made from high-strength steel and have excellent tensile strength, making them ideal for reinforcing concrete in industrial structures that are subject to heavy loads, vibrations, or other dynamic forces. Steel rebars also have good ductility and can withstand bending without breaking, which is important in industrial structures where high structural integrity is required. Additionally, steel rebars have good resistance to corrosion, which is essential in industrial environments where exposure to moisture, chemicals, or other corrosive agents is common. Overall, steel rebars are a reliable and durable choice for reinforcing industrial structures, ensuring their long-term structural stability and safety.
Q: What is the purpose of using steel rebars in concrete structures?
To enhance the overall strength and durability of concrete structures, steel rebars are employed. While concrete excels in compression, it lacks strength in tension. By integrating steel rebars into the concrete, the structure becomes capable of withstanding tensile forces and averting cracking or failure. Typically crafted from carbon steel, steel rebars possess robustness and high tensile strength. They are positioned within the concrete molds prior to pouring, thereby creating a reinforced concrete structure. When exposed to tensile forces, the concrete transfers the load to the steel rebars, which can effectively endure the stretching or pulling forces. This reinforcement aids in the equitable distribution of the load, warding off localized stress points and diminishing the likelihood of structural failure. In addition to providing tensile strength, steel rebars also assist in managing cracks in concrete structures. As concrete contracts and expands due to temperature fluctuations or drying, it becomes susceptible to cracking. The inclusion of steel rebars curbs the width and extent of these cracks, guaranteeing the structural integrity and prolonged lifespan of the concrete. Moreover, steel rebars heighten the resistance of concrete structures to seismic activity or other dynamic forces. The malleability of steel rebars enables them to absorb and dissipate energy during earthquakes or vibrations, thereby diminishing the risk of collapse. In essence, the purpose of incorporating steel rebars into concrete structures is to fortify and reinforce the concrete. This entails providing additional tensile strength, managing cracks, and augmenting the overall durability and resilience of the structure.
Q: Are steel rebars resistant to chemical exposure?
Steel rebars are generally resistant to chemical exposure. The high strength and durability of steel make it less prone to corrosion and degradation when exposed to chemicals. However, there are certain chemicals that can still have a detrimental effect on steel rebars. Acids, such as sulfuric acid, can corrode steel and weaken its structure over time. Additionally, some highly alkaline substances can also cause corrosion in steel rebars. Therefore, while steel rebars are resistant to many chemicals, it is important to consider the specific chemical environment and take necessary precautions to protect them from potential damage.
Q: How do steel rebars impact the overall energy efficiency of a structure?
Steel rebars can have both positive and negative impacts on the overall energy efficiency of a structure. On one hand, steel rebars can enhance the structural integrity and durability of the building, leading to a longer lifespan and reduced energy consumption for repairs and maintenance. Additionally, steel rebars can be used to reinforce concrete, which provides better insulation and thermal efficiency. On the other hand, the production of steel rebars requires significant energy and emits greenhouse gases, contributing to the carbon footprint of the structure. Therefore, the overall energy efficiency of a structure depends on various factors, including the design, construction techniques, and the use of sustainable materials alongside steel rebars.
Q: Can steel rebars be used in the construction of industrial facilities?
Yes, steel rebars can be used in the construction of industrial facilities. Steel rebars provide strength and reinforcement to concrete structures, making them suitable for heavy-duty applications in industrial settings. These rebars are commonly used in the construction of industrial buildings, warehouses, factories, power plants, and other similar facilities to ensure the structural integrity and durability of the infrastructure.
Q: How do steel rebars affect the seismic performance of a structure?
Steel rebars significantly improve the seismic performance of a structure by enhancing its strength, ductility, and overall structural stability. Rebars help to distribute and dissipate seismic forces, reducing the risk of structural failure and collapse during an earthquake. By reinforcing concrete elements, rebars increase the structure's resistance to bending, tension, and shear forces, thereby improving its ability to withstand seismic ground motions and maintain its integrity.
Q: Can steel rebars be used in retaining walls?
Yes, steel rebars can be used in retaining walls. Steel rebars, also known as reinforcing bars, are commonly used in retaining walls to provide additional strength and reinforcement. The rebars are typically embedded within the concrete or masonry structure of the retaining wall, helping to increase its structural integrity and resistance to forces such as soil pressure. The use of steel rebars in retaining walls helps to prevent cracking, shifting, or collapsing of the wall, making it a reliable and durable solution for retaining soil and preventing erosion.
Q: What are the advantages of using ribbed steel rebars?
Using ribbed steel rebars in construction projects offers several advantages. To begin with, the ribbed design of these rebars enhances the bonding with concrete. The presence of ribs increases the contact surface area between the rebar and the surrounding concrete, resulting in improved adhesion and prevention of slippage. This ultimately leads to a stronger bond, ensuring the structural integrity of the reinforced concrete. Secondly, ribbed steel rebars provide enhanced resistance against shear forces. The ribs act as anchor points within the concrete, evenly distributing the load and reducing the risk of failure due to shear stress. This makes ribbed rebars particularly suitable for applications that experience high shear forces, such as beams and columns. Additionally, the ribbed pattern of these rebars improves their ductility. Ductility refers to a material's ability to undergo deformation without breaking. The presence of ribs allows the steel rebar to stretch and bend without fracturing, making it more resistant to cracking or failure under stress. This is particularly crucial in earthquake-prone areas, where a structure's ability to absorb and dissipate energy is vital for its survival. Furthermore, ribbed steel rebars demonstrate excellent corrosion resistance. The ribs act as a barrier, effectively preventing moisture and corrosive agents from reaching the steel core. This significantly prolongs the lifespan of the rebar, reducing maintenance costs and ensuring the long-term durability of the reinforced concrete structure. Lastly, ribbed steel rebars are readily available and cost-effective. They come in various sizes and lengths, allowing for easy customization to meet different construction needs. Additionally, due to their popularity and widespread use, ribbed rebars are competitively priced, making them a cost-effective option for reinforcing concrete structures. In conclusion, the use of ribbed steel rebars offers multiple benefits, including enhanced bonding with concrete, improved resistance to shear forces, greater ductility, excellent corrosion resistance, and cost-effectiveness. These advantages make ribbed rebars an ideal choice for reinforcing concrete structures, guaranteeing strength, durability, and longevity in construction projects.
Q: Can steel rebars be used in heritage bridge restoration?
Yes, steel rebars can be used in heritage bridge restoration. Steel rebars provide added strength and structural integrity to the bridge, ensuring its long-term stability and durability.

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

Hot products


Hot Searches

Related keywords