H13 Round bar Special Steel Carbon Steel
- Loading Port:
- China main port
- Payment Terms:
- TT OR LC
- Min Order Qty:
- 25 m.t.
- Supply Capability:
- 10000 m.t./month
OKorder Service Pledge
OKorder Financial Service
You Might Also Like
Specification
Chemical Composition%
Country | Standard | C | Si | Mn | Cr | Mo | V | S | P |
China(GB) | 4Cr5NoSiV1 | 0.32-0.45 | 0.80-1.20 | 0.20-0.50 | 4.75-5.50 | 1.10-1.75 | 0.80-1.20 | ≤0.030 | ≤0.030 |
USA(ASTM) | H13 | 0.32-0.45 | 0.80-1.20 | 0.20-0.50 | 4.75-5.50 | 1.10-1.75 | 0.80-1.20 | ≤0.030 | ≤0.030 |
Germany(DIN) | 1.2344 | 0.37-0.42 | 0.90-1.20 | 0.30-0.50 | 4.80-5.50 | 1.20-1.50 | 0.90-1.10 | ≤0.030 | ≤0.030 |
Japan(JIS) | SKD61 | 0.37-0.42 | 0.90-1.20 | ≤0.50 | 4.50-5.50 | 1.00-1.50 | 0.80-1.20 | ≤0.030 | ≤0.030 |
Available Size
Rolled round bar:φ12-80mm × L
Forged round bar:φ85-600mm × L
Characterstics
1.Higher thermal strength and hardness | ||||||
2.Better toughness and elevated temperature fatigue resistance | ||||||
3.Hardness maintaining ability at 600℃ | ||||||
4.Good polishing performance |
Applications: Suitable for aluminum and copper die-casting moulds working for long time at elevated temperatures,hot extrusion dies,core rod forging dies,plastic moulds,etc,also suitable for heat resistance thimbles,push rods and ejector sleeves
1, Your advantages?
professional products inquiry, products knowledge train (for agents), smooth goods delivery, excellent customer solution proposale
2, Test & Certificate?
SGS test is available, customer inspection before shipping is welcome, third party inspection is no problem
3, Payment Terms?
30% TT as deposit and 70% before delivery.
Irrevocable L/C at sight.
4, Trading Terms?
EXW, FOB, CIF, FFR, CNF
6, After-sale Service?
We provides the services and support you need for every step of our cooperation. We're the business partner you can trust.
For any problem, please kindly contact us at any your convenient time.
We'll reply you in our first priority within 24 hours.
- Q: What are the main applications of special steel in the energy storage industry?
- Special steel is extensively used in the energy storage industry for various applications. It is primarily employed in the manufacturing of storage tanks and containers, ensuring the safe storage and transport of energy sources such as liquefied natural gas (LNG) or compressed hydrogen. Special steel is also utilized in the construction of battery casings and components, providing durability and protection for energy storage systems. Additionally, special steel is crucial in the fabrication of critical infrastructure, such as pipelines and transmission towers, which play a vital role in the efficient distribution of energy. Overall, special steel serves as a fundamental material in the energy storage industry, enabling the reliable and secure storage, transportation, and utilization of various energy sources.
- Q: What is the purpose of annealing in special steel production?
- The aim of annealing in the production of special steel is to enhance the mechanical characteristics and overall quality of the steel. Annealing involves subjecting the steel to a particular temperature and gradually cooling it, typically in a controlled setting. This procedure aids in relieving any internal stresses or strains that might have developed during previous manufacturing processes like rolling or forging. During the annealing process, the microstructure of the steel goes through changes, resulting in a more refined and uniform material. The process allows for the redistribution of atoms, thereby eliminating defects, improving grain structure, and enhancing the steel's toughness, ductility, and machinability. Furthermore, annealing helps in reducing the hardness of the steel, rendering it easier to work with and shape. It also enhances the steel's resistance to cracking and increases its ability to withstand corrosion and other environmental factors. In certain special steel alloys, annealing can also be employed to achieve desired physical properties such as increased hardness or improved magnetic characteristics. Ultimately, the objective of annealing in the production of special steel is to optimize the steel's properties and ensure it meets the specific requirements of its intended application, be it in industries such as automotive, aerospace, or manufacturing.
- Q: How does special steel contribute to the heavy equipment industry?
- Special steel contributes to the heavy equipment industry by offering enhanced strength, durability, and resistance to wear and tear. It enables the production of high-performance components and parts, such as gears, axles, and blades, that can withstand heavy loads, extreme temperatures, and harsh environments. The use of special steel in heavy equipment ensures improved safety, increased productivity, and longer service life, making it a critical material for the industry.
- Q: What are the different methods of surface etching for special steel?
- Special steel can be surface etched using various methods. These methods include the following: 1. Chemical etching: This technique involves selectively removing material from the steel surface using different acids or chemical solutions. It allows for precise control and can create intricate patterns or designs. 2. Electrochemical etching: By using an electrical current, the steel surface is etched. This method is effective for creating uniform and deep etches, often used for labeling or marking purposes. 3. Laser etching: A high-powered laser is utilized to remove material from the steel surface. This method is known for its precision and ability to create detailed designs or markings, commonly used for branding or decorative purposes. 4. Mechanical etching: Physical abrasion is employed to remove material from the steel surface. This can be done manually with tools like sandpaper or brushes, or with the help of machinery like a sandblaster. Mechanical etching is often used to create a textured or roughened surface. 5. Plasma etching: High-energy plasma is used to remove material from the steel surface. This method is useful for creating fine and shallow etches, commonly employed in microfabrication or semiconductor manufacturing. Each method has its own advantages and limitations. The choice of which method to use depends on factors such as the desired outcome, the specific type of special steel being etched, and the available equipment and resources.
- Q: What are the international standards for special steel?
- The international standards for special steel vary depending on the specific type and application of the steel. However, some widely recognized international standards organizations, such as the International Organization for Standardization (ISO) and the American Society for Testing and Materials (ASTM), provide guidelines and specifications for special steel in terms of composition, mechanical properties, and performance. These standards ensure uniformity and quality control in the production and usage of special steel across different countries and industries.
- Q: What are the common challenges in heat treating titanium alloys?
- There are various difficulties encountered when heat treating titanium alloys. One of the primary obstacles arises from titanium's strong tendency to react with oxygen, nitrogen, and hydrogen at elevated temperatures. This reactivity can lead to contamination on the surface and the creation of unwanted oxides, nitrides, or hydrides, which can adversely affect the mechanical characteristics of the alloy. Another challenge involves the development of alpha-case, a thick layer of alpha-phase titanium that forms on the alloy's surface during the heating process. This alpha-case is brittle and can significantly diminish the material's fatigue strength and ductility. Consequently, it is crucial to minimize or eliminate the formation of alpha-case during titanium alloy heat treatment. Moreover, titanium alloys have a limited temperature range for effective heat treatment. If the temperature is too low, the desired microstructure and mechanical properties may not be achieved. Conversely, if the temperature is too high, grain growth can occur, resulting in reduced strength and toughness of the alloy. Furthermore, precise control over the heating and cooling rates is often required when heat treating titanium alloys to achieve the desired microstructure and properties. Inadequate or uneven cooling can lead to non-uniform microstructures, residual stresses, or distortion of the component. Finally, the cost of heat treating titanium alloys can pose a challenge. Titanium alloys have a high affinity for oxygen, necessitating the use of specialized equipment such as vacuum furnaces or controlled atmosphere furnaces to maintain a low oxygen environment. These specialized heat treatment processes can be costly and demand careful handling and maintenance to ensure the desired outcomes. To summarize, the common challenges encountered in heat treating titanium alloys include managing reactivity with oxygen, nitrogen, and hydrogen, minimizing alpha-case formation, achieving the appropriate temperature range, controlling heating and cooling rates, and dealing with the expenses associated with specialized equipment and processes. Overcoming these challenges is essential to obtain high-quality titanium alloy components with the desired properties.
- Q: Can special steel be used in the textile industry?
- Yes, special steel can be used in the textile industry. Special steel, such as stainless steel, can be used in the production of various textile machinery components, including needles, pins, and loom parts. It offers durability, corrosion resistance, and strength, making it suitable for demanding textile manufacturing processes. Additionally, special steel can be used in the fabrication of textile machine frames and structures, providing the necessary stability and support.
- Q: What are the different nitriding techniques used for special steel?
- There are three main nitriding techniques used for special steel: gas nitriding, salt bath nitriding, and plasma nitriding. Gas nitriding involves exposing the steel to ammonia gas at high temperatures, resulting in the diffusion of nitrogen into the surface. Salt bath nitriding involves immersing the steel in a bath of molten salt containing nitrogenous compounds, allowing for nitrogen diffusion. Plasma nitriding, on the other hand, uses a low-pressure plasma to bombard the steel surface with nitrogen ions, creating a hardened layer. Each technique offers unique advantages and is chosen based on the specific requirements and properties desired for the special steel.
- Q: What are the different heat treatment methods for special steel?
- There are several heat treatment methods for special steel, including annealing, normalizing, quenching, tempering, and case hardening. Annealing involves heating the steel and then slowly cooling it to relieve internal stresses and improve its ductility. Normalizing is a similar process but involves cooling the steel in still air to achieve a more uniform structure. Quenching is a rapid cooling process that results in a hardened steel with increased strength and hardness. Tempering involves reheating the hardened steel to a specific temperature to reduce its brittleness and improve toughness. Finally, case hardening is a process where only the surface of the steel is hardened, while the core remains relatively soft, resulting in a tough and wear-resistant material.
- Q: How does special steel contribute to reducing production costs?
- Special steel can contribute to reducing production costs by offering improved durability and wear resistance, allowing for longer tool life and reducing the need for frequent replacements. Additionally, special steel's enhanced machinability can lead to faster production speeds and increased efficiency, resulting in cost savings.
Send your message to us
H13 Round bar Special Steel Carbon Steel
- Loading Port:
- China main port
- Payment Terms:
- TT OR LC
- Min Order Qty:
- 25 m.t.
- Supply Capability:
- 10000 m.t./month
OKorder Service Pledge
OKorder Financial Service
Similar products
Hot products
Hot Searches
Related keywords