• Graphite Plate/CNBM Wholesale Carbon Graphite Plates System 1
  • Graphite Plate/CNBM Wholesale Carbon Graphite Plates System 2
  • Graphite Plate/CNBM Wholesale Carbon Graphite Plates System 3
Graphite Plate/CNBM Wholesale Carbon Graphite Plates

Graphite Plate/CNBM Wholesale Carbon Graphite Plates

Ref Price:
get latest price
Loading Port:
China main port
Payment Terms:
TT OR LC
Min Order Qty:
0 m.t.
Supply Capability:
100000 m.t./month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Packaging & Delivery

Packaging Details:standard export wooden package or according to customers' request
Delivery Detail:15-30days after receiving your deposit

Product Description

Graphite plate is made form the domestic petroleum coke and widely used in the metallurgy, machinery, electronics and chemical industry, etc. The graphite plate include molded, extruded, vibrated and isostatic. Our main and most preponderant graphite plate is molded formed. Our products own the following characteristics: low electricr esistance, good electric and thermal conductivity, high oxidation resistance, greater resistance to thermal and mechanical shock, high mechanical strength, high machining accuracy and so on.

 

Usage

They have been used extensively in industries like solar, foundry, chemicals, electronics, ferrous metals, high-temp, heat conduction, metallurgy, lubrication, anti-corrosion .etc

1. Refractory material: widely used in the metallurgical industry.

 

2. Conducting material: In the electronics industry, widely used for graphite electrode, brush,, etc

 

3. Wear-resisting material and lubricant: Use graphite as wear-resisting and lubrication materials, can be 100m/s speed sliding in - 200 ~ 2000 °C temperature range , no or less lubricanting oil.

 

4. Sealing material: it can be as sealing ring in the equipment, such as centrifugal pump, hydraulic turbine ,etc.

 

5. Anticorrosion material: Widely used in petroleum, chemical, hydrometallurgy departments.

 

6. Insulation, high temperature resistant, radiation protection materials

 

7.Molds:  hot pressing molds, static casting molds, centrifugal casting molds, pressure  casting molds, fused refractory molds, etc.

 

8. Furnace parts:  resistance heating elements, induction susceptors, structural elements and charging plates, furnace linings, heat shields and covers for pulling monocrystalline silicon or optical fibers, etc.

 

9. Anodes for the electrolysis of metals. As graphite elecerode plate and graphite anode plate .

 

10.. Parts for heat exchangers.

 

11. Mahince to Crucibles for melting and reduction. 

 Physical and chemical index

 

Item

Unit

Guarantee Value

Typical Value

Grain size

mm

0.8

0.8

Density

g/cm3

1.70

1.73

Resistance

ohm

8.5

7.5

Bending Strength

MPa

10.0

11.0

Compressive strength

MPa

24.0

17.0

Thermal conductivity

W(m.k)

120

150

C.T.E(100-600)℃

10-6/℃

2.5

2.2

Ash Content

%

0.3

0.09

 

Item

Unit

Guarantee Value

Typical Value

Grain size

mm

0.8

0.8

Density

g/cm3

1.73

1.76

Resistance

ohm

8.0

7.0

Bending Strength

MPa

12.0

12.5

Compressive strength

MPa

31.0

34.0

Thermal conductivity

W(m.k)

130

160

C.T.E(100-600)℃

10-6/℃

2.5

2.1

Ash Content

%

0.3

0.09

 

Item

Unit

Guarantee Value

Typical Value

Grain size

mm

2

2

Density

g/cm3

1.58

1.60

Resistance

ohm

11.5

10.5

Bending Strength

MPa

6.0

6.5

Compressive strength

MPa

18.0

18.5

Modulus of elasticity

GPa

9.3

7.5

C.T.E(100-600)℃

10-6/℃

2.5

2.4

Ash Content

%

0.3

0.09

 

Item

Unit

Guarantee Value

Typical Value

Grain size

mm

2

2

Density

g/cm3

1.70

1.75

Resistance

ohm

8.5

7.5

Bending Strength

MPa

9.0

9.5

Compressive strength

MPa

30.0

31.0

Modulus of elasticity

GPa

12.0

9.5

C.T.E(100-600)℃

10-6/℃

2.5

2.3

Ash Content

%

0.3

0.09

 Picture

Graphite Plate/CNBM Wholesale Carbon Graphite Plates

Graphite Plate/CNBM Wholesale Carbon Graphite Plates




Q: What's the reason for grading? What about the use of composites? What's the difference?
1, carbon fiber has a benzene ring structure, making it difficult to rotate the molecular chain. A polymer molecule cannot fold and stretch to form a rodlike structure, thus giving fibers a high modulus.The linear structure of carbon fiber polymers allows molecules to be arranged so closely that a large number of polymer molecules can be accommodated in a unit volume. This high density makes the fibers stronger.
Q: RT~ I remember our teacher said, but I forgot all of a sudden......Ask for advice!
Well, secondary carbon and oxygen double bonds do not add much. What is involved in high school?:1, in the nickel catalyzed conditions, with H2 addition (also a reduction, but note that in the carboxyl group -COOH carbon oxygen double bond can not be added by the general method plus H)2, aldehyde addition (aldol condensation). The college entrance examination had many times, is simply an aldehyde -CHO under certain conditions and containing active H group reaction R-H (commonly known as alpha H that -H doesn't have to be in the next -CHO H, like -COOH, phenyl can also, but to see more in the next -CHO generation of C- (OH) -R). The H is added to the O, and the alkyl R- is added to the C.For example: CH3-CHO+HCHO==CH3-C (OH) -CHO (called 2- 3-hydroxypropanal)There are some universities, the mechanism involved is more complex, you want to HI me
Q: Can barbecue carbon still have the effect of absorbing formaldehyde?
3) photocatalyst, it is like as photosynthesis makes use of natural light catalytic decomposition of formaldehyde, benzene and other harmful gases, and the main component of titanium dioxide photocatalyst is very safe, allowing food and cosmetics to add trace. At present, many brands in the market, Japan in the development of photocatalyst is better.
Q: Does alumina react with carbon?
NotThe smelting of Al in industry can only be done by electrolysis. Even at high temperatures, the reducibility of C is not as strong as Al, and the melting point of Al2O3 is very high. At this temperature, C has been gasified
Q: What are the consequences of increased carbon emissions on coral reefs?
Coral reefs are severely impacted by the increased emission of carbon, resulting in numerous consequences. One major effect is the occurrence of ocean acidification, which happens when excess carbon dioxide is absorbed by seawater, causing a decrease in pH levels. This acidification hampers the ability of corals to construct their calcium carbonate skeletons, making them more susceptible to erosion and breakage. Moreover, elevated levels of carbon dioxide in the atmosphere contribute to global warming, leading to the rise of ocean temperatures. Consequently, coral bleaching occurs as corals expel the symbiotic algae responsible for their vibrant colors. Without these algae, corals become stressed, lose their color, and become more vulnerable to disease and death. Additionally, increased carbon emissions contribute to alterations in ocean currents and weather patterns, resulting in more frequent and intense storms. These storms physically damage coral reefs, causing further destruction to already fragile ecosystems. The consequences of increased carbon emissions on coral reefs are profound and devastating. The decline of coral reefs not only impacts the biodiversity of the oceans but also has significant implications for human populations that rely on reefs for sustenance, income, coastal protection, and tourism. It is imperative to reduce carbon emissions and take immediate action to safeguard and preserve these invaluable ecosystems.
Q: What is carbon fiber reinforced plastic?
By combining carbon fibers with a polymer matrix, namely epoxy resin, carbon fiber reinforced plastic (CFRP) is produced. Its exceptional strength-to-weight ratio sets it apart as a lightweight alternative to conventional materials like steel and aluminum. The carbon fibers offer high tensile strength and stiffness, while the polymer matrix evenly distributes the load and ensures durability. The manufacturing process involves layering carbon fiber sheets or fabrics and saturating them with the polymer resin. Subsequently, this combination is cured under high temperature and pressure, resulting in a solid and rigid structure. The resulting material is incredibly strong, yet significantly lighter than materials of comparable strength, such as steel. Thanks to its unique properties, CFRP finds widespread applications in various industries. In aerospace and automotive sectors, it is commonly employed to reduce component weight and enhance fuel efficiency. Moreover, it finds use in sports equipment like bicycles, tennis rackets, and golf clubs, as it enables superior performance and maneuverability. The construction industry also utilizes CFRP, benefiting from its high strength and corrosion resistance for reinforcing structures like bridges and buildings. All in all, carbon fiber reinforced plastic is a versatile and high-performance material that combines the strength of carbon fibers with the flexibility of a polymer matrix. Its lightweight nature and exceptional mechanical properties make it a favored choice in industries where strength, weight reduction, and durability are paramount.
Q: Buy carbon carving, how to identify him is true or false, and the quality of good or bad?
General consumers believe that bamboo charcoal, powder, charcoal and purple carbon carving are "carbon" to do, and the former is very cheap, why not buy them, in fact, otherwise, because not the same kind of products. Bamboo charcoal and powdered activated carbon have little effect on the purification of indoor air. Their function is not different from that of a pack of quicklime - adsorption of water vapor. But consumers are not aware of this, they also propaganda have the function of purifying air and we mixed together to sell, finally, once consumers buy found not what role, will also lose confidence in carving, which makes us very sad.Let's talk about bamboo charcoal first. Charcoal is not a purple carbon carving, this is a common sense. If bamboo charcoal can also absorb toxic and harmful gases, then the main material of gas masks do not need to use more expensive activated carbon, but not sublimation of purple carbon carving, and the price of bamboo charcoal is not economical? Because the bamboo charcoal and charcoal are natural burning carbon, not activated by directional adsorption, namely, pickling, washing, activation process, the adsorption of activated carbon 1/10 is insufficient, they can have is to adjust the indoor temperature, not only this, as they advertised "bamboo charcoal is activated carbon is purple carbon carving".Say, powdered activated carbon.
Q: How does carbon affect air quality?
Carbon is a major contributor to air pollution as it combines with oxygen to form carbon dioxide (CO2), a greenhouse gas responsible for climate change. Additionally, carbon-based pollutants, such as carbon monoxide (CO) and volatile organic compounds (VOCs), can be released from the combustion of fossil fuels and contribute to poor air quality and negative health effects.
Q: Who is the high carbon content of stainless steel and ordinary steel?
This is not necessarily stainless steel is carbon steel, based on the addition of zinc, nickel and chromium and other elements
Q: Carbon injection molding machine heating several degrees
The nozzle temperature is 260~310 degrees, and the temperature control of the two types of injection molding machine nozzles is different. The mold temperature has great influence on the mechanical properties of the products. With the increase of mold temperature. The temperature and the temperature difference between the temperature decreases, the shear stress decreases, can melt in the mold cavity slow cooling, the molecular chain orientation to relaxation reduced, thereby reducing the internal stress of products, but the impact strength and elongation of the products decreased significantly, while there will be demolding. When demoulding, it is easy to deform, prolong the molding cycle and reduce the production efficiency, while the lower mold temperature will increase the internal stress of the product. Therefore, the die temperature must be controlled. Normally, the mold temperature of PC is 80~120 degrees centigrade. Ordinary products are controlled at 80~100 degrees, while for complex shapes, thin walls and high requirements, the product is controlled at 100~120 degrees centigrade and is not allowed to exceed its thermal deformation temperature. Mold temperature control is particularly important when forming PC thick wall products.

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

Hot products


Hot Searches

Related keywords