Graphite Crucibles Wholesell/High Strengh CNBM
- Loading Port:
- Tianjin
- Payment Terms:
- TT OR LC
- Min Order Qty:
- 0 m.t.
- Supply Capability:
- 10000 m.t./month
OKorder Service Pledge
OKorder Financial Service
You Might Also Like
Features
1.Long working lifetime: its working lifetime is increased 3-5 times over normal clay-crucible due to the compact body formed under high pressure.
2.High thermal conductivity: highdensity body and low apparent porosity greatly improve its heat conductivity.
3.Newstyle materials: new heat conduction material ensures faster heat conductivity and pollution-free product, reduces adherent slag.
4.Resistance to corrosion:better anti-corrosion than normal clay-crucible.
5.Resistance to oxidation: advanced process dramatically improves its oxidation resistance, which ensures persistent heat conductivity and long working lifetime.
6.High-strength: high-density body and logical structure make the product better compression property.
7.Eco-friendly: energy-efficient and pollution-free, not only ensure metal product purity, but also ensure sustainable development on environment.
8.Multi-function: Can be used in induction graphite crucible furnace
Specification
Bulk Density | g/cc | 1.70-1.88 |
Specific Resistance | μΩ.m | 6.0-15.0 |
Compressive Strength | MPa | 30-80 |
Bending Strength | MPa | 20-45 |
Shore hardness | 30-70 | |
C.T.E.(100-600°C) | x10-6 /°C | 2.5-5.5 |
Ash | % | 0.01-0.2 |
Maximum Grain Size | mm | 0.044-0 |
Product Uses
1. Graphite crucible cannot be exposed in moisture, and must be placed in indoor dry place or wooden shelf. Maintain ventilated. Moisture is strictly prohibited. Damped crucible is likely to crack.
2. Each crucible, especially damped ones, must be preheated and roasted in drying equipment or next to a ground furnace before use. The roasting temperature should start from a low temperature of 100°C below. Roast it to 150°C at a speed of not higher than 30°C per hour. Preserve the heat for about 8 hours and then dry it. The crucible dried next to a ground furnace should be placed at least for one shift, and often turned to change direction, till workers feel the internal wall of crucible is hot.
3. The melting time for the first time should be at least twice of the normal melting time, in order to avoid cracking inside the crucible due to heating up too fast, or even cracking immediately when the fire sets on.
4. Handle with care. Falling or shaking is strictly forbidden in order to present cracking. Crucible should be placed below the mouth of furnace to prevent the furnace lid abrading the upper edge of the crucible and thus affecting the capacity.
5. Pour out the remaining cold metals inside the crucible after use, and then add new materials. Carefully and gently add new materials into the crucible. Feed materials according to the capacity of crucible. It is not allowed to feed too many materials, in order to prevent crucible from swelling or bursting.
6. Knock gently to remove slags and cokes on the internal and external wall of the crucible. Avoid damaging the crucible body.
7. In the melting process, do not add chloride solvents in order not to corrode the crucible. For the furnace that uses oil and coal gas as fuels, the oil wind should not reach one part of the crucible directly. Turn around the crucible from time to time, in order to avoid local damage.
8. Clamps and other discharging tools should comply with the shape of the crucible. During furnace discharging, remove the cokes on the external wall of the crucible, and lower the furnace temperature; do not discharge at high temperature after stopping blasting. Clamp the upper and middle parts instead of the top of the crucible in order not to damage the crucible. Graphite crucible is used mainly to melt gold, silver and other precious metals.
- Q: What is carbon neutral?
- Carbon neutral refers to achieving a state where the amount of carbon dioxide emitted into the atmosphere is balanced with the amount that is removed or offset. It is a widely used term in the context of addressing climate change and reducing greenhouse gas emissions. To become carbon neutral, one must first assess their carbon footprint, which involves calculating the greenhouse gases produced through activities like energy consumption, transportation, and waste management. Once the emissions are identified, steps are taken to decrease them through various methods, such as improving energy efficiency, utilizing renewable energy sources, and adopting sustainable practices. Although it is challenging to completely eliminate carbon emissions, it is crucial to reduce them. In cases where complete elimination is not possible, carbon offsets can be employed to compensate for the remaining emissions. Carbon offsets involve investing in projects that reduce or remove greenhouse gases from the atmosphere, like reforestation, renewable energy initiatives, or methane capture projects. By achieving carbon neutrality, individuals, organizations, or activities can assert that they are not contributing to the increase of greenhouse gases in the atmosphere. This is a significant objective in the battle against climate change, as it helps mitigate the adverse effects of carbon emissions and promotes a more sustainable and environmentally friendly future.
- Q: Can barbecue carbon still have the effect of absorbing formaldehyde?
- Yes, there are many things to absorb formaldehyde, but still need to put a little longer, after all, the body is important
- Q: How are carbon compounds classified?
- Carbon compounds are classified based on their structural arrangement, functional groups, and the type of bonds they form with other elements.
- Q: What should be done to deal with leakage of carbon monoxide from the plant?
- The hazardous and dangerous characteristics of carbon monoxide, carbon monoxide, is the Chinese name of CO. It is the product of incomplete combustion of materials. It is slightly soluble in water and soluble in various organic solvents such as ethanol and benzene. Mainly used in industrial chemical synthesis, such as synthetic methanol, phosgene, etc., or refined metal reducer. Occupation exposure to carbon monoxide in manufacturing steel and iron, coke, ammonia, methanol, graphite electrode, printing and dyeing factory, singeing, internal combustion engine powered coal mining blasting; non occupation contact is more extensive, such as household water heater was boiling water, winter coal, gas heating and so on, will produce carbon monoxide. Carbon monoxide is a flammable toxic gas known, but because of its physical and chemical properties of colorless smelly, so it is not easy to be aware of the harm, so it is not only the occupation killer, or the people's daily living potential. Carbon monoxide mixed with air can form an explosive mixture. When exposed to fire, high heat can cause combustion and explosion. Bottled carbon monoxide in case of high fever, increased pressure within the container, cracking and explosion. Because carbon monoxide has flammable properties, strong oxidizing agents and alkalis are its inhibitions. If the fire, should immediately cut off the gas source; if not immediately cut off the gas source, is not allowed to extinguish the burning gas.
- Q: What are the effects of carbon emissions on the stability of mountains?
- The stability of mountains is significantly impacted by carbon emissions, leading to various negative consequences. One of the primary effects is the accelerated melting of glaciers and ice caps, caused by global warming resulting from carbon emissions. Rising temperatures cause the ice and snow that hold mountains together to melt, resulting in increased instability. This melting can lead to more frequent and larger avalanches, landslides, and rockfalls, posing a significant threat to human settlements and ecosystems in mountainous areas. Another consequence of carbon emissions on mountain stability is the alteration of precipitation patterns. As the climate changes, rainfall becomes more unpredictable, resulting in a higher frequency of intense rainfall events. This increased rainfall can cause soil erosion and weaken the stability of mountain slopes. The combination of increased erosion and weakened slopes can lead to landslides and other mass movements, further destabilizing mountains. Furthermore, carbon emissions contribute to the acidification of rainwater, which can have detrimental effects on mountain stability. Acid rain erodes rocks and soil, making them more susceptible to weathering processes. This weakening of the geological structure increases the likelihood of landslides and rockfalls. Lastly, carbon emissions also impact mountain stability through their influence on ecosystems and biodiversity in mountainous regions. Climate change caused by carbon emissions can lead to shifts in ecosystems and biodiversity, affecting the stability and resilience of mountain ecosystems, as well as altering vegetation cover patterns. The loss of vegetation cover, for example, further increases the susceptibility of slopes to erosion and landslides. In conclusion, carbon emissions have a range of negative effects on mountain stability. From accelerated glacier melting to altered precipitation patterns, acid rain, and shifts in ecosystems, these emissions pose a significant threat to the geological and ecological stability of mountains. It is crucial to reduce carbon emissions and address climate change to mitigate these effects and preserve the stability of mountain regions.
- Q: How does carbon affect the formation of wildfires?
- Carbon does not directly affect the formation of wildfires, but it plays a crucial role in their intensity and duration. Carbon is a key component of organic matter, such as vegetation and dead plants, which serve as fuel for wildfires. When a wildfire occurs, the heat causes the carbon in these fuels to combine with oxygen, resulting in the process of combustion. This combustion releases energy in the form of heat, light, and gases, including carbon dioxide (CO2) and carbon monoxide (CO). The presence of carbon-rich fuels significantly contributes to the spread and intensity of wildfires. Dry and dead vegetation, often referred to as fuel loads, are highly flammable and allow fires to rapidly spread. Additionally, the carbon content in these fuels determines the amount of energy released during combustion. Consequently, the more carbon-rich the fuel, the more intense the fire will be. Moreover, the combustion of carbon during wildfires releases significant amounts of carbon dioxide into the atmosphere. Carbon dioxide is a greenhouse gas, which traps heat in the Earth's atmosphere and contributes to the greenhouse effect, leading to global warming. Increased levels of carbon dioxide in the atmosphere exacerbate climate change, further influencing the frequency and severity of wildfires. In summary, carbon indirectly affects the formation of wildfires by serving as fuel for combustion. The carbon content in vegetation and dead plants determines the intensity and spread of wildfires, while the release of carbon dioxide during combustion contributes to the long-term impact of wildfires on climate change.
- Q: What are the economic impacts of carbon emissions?
- The economic impacts of carbon emissions are significant and wide-ranging. Carbon emissions contribute to climate change, leading to more frequent and severe extreme weather events such as hurricanes, droughts, and heatwaves. These events can result in extensive property damage, loss of agricultural productivity, and increased healthcare costs. Furthermore, carbon emissions contribute to air pollution, which has detrimental effects on human health and productivity. Increased healthcare expenditures, decreased workforce productivity, and higher mortality rates are some of the negative economic consequences associated with air pollution caused by carbon emissions. Additionally, industries that heavily rely on fossil fuels, such as coal and oil, may face economic challenges as governments and consumers increasingly demand cleaner and more sustainable alternatives. This transition towards a low-carbon economy may lead to job losses in carbon-intensive sectors and require significant investments in new technologies and infrastructure. On the other hand, reducing carbon emissions can also create economic opportunities. The growth of renewable energy industries, such as solar and wind power, can create new jobs and foster innovation. Moreover, investing in energy-efficient technologies and practices can lead to cost savings for businesses and households. In summary, the economic impacts of carbon emissions encompass both negative consequences, such as climate-related damages and health costs, as well as potential positive outcomes, including job creation and cost savings through clean energy and efficiency measures. Addressing carbon emissions is crucial for sustainable economic development and long-term prosperity.
- Q: Today in the market to buy Yuba, instructions have such a word that I don't understand, please master Zhijiao: carbon fiber after energized carbon molecule formation of Brown movement, this movement can be effective in most of the electrical energy into the far infrared.
- They are the transition of vibrational levels or rotational levels under conditions of carbon energization. All molecules are doing irregular movements, for example, there is a bond between two molecules, equivalent to a spring connecting two balls connected to two balls, they vibrate, the frequency is v.
- Q: Learn photography for nearly half a year, has always wanted to buy a tripod, want to buy carbon fiber tripod, what brand is better? The machine is D700+24-70About 3000 is too expensive ~ consider 1000 more just fine. Wage earners!
- The three tripod has such a word: buy third tripod to know the first two are white bought!This sentence is a lot of friends with real money summed up, and hope to see!The three tripod is the most important, safe and reliable, and then the price, can not guarantee the safety of equipment, the price is cheaper and useless.The more than 1000 budget recommendations for the selection of source or berno, quality guaranteed, price is also good. If not on the cannon, not in harsh environment, the maximum diameter of 25mm, 4 section can also (cheap).Finally: carbon fiber hundreds of three tripod is not necessarily not, but never heard of this three foot will drop the camera, my answer can only represent personal views, for a reference.
- Q: What is the boiling point of carbon?
- The boiling point of carbon, an element that is not metallic, is determined by its allotrope. Carbon exhibits various allotropes, such as graphite and diamond, each possessing distinct physical characteristics. Graphite, comprising layers of carbon atoms organized in a hexagonal lattice, lacks a boiling point because it directly transitions from a solid to a gas through sublimation. Conversely, diamond, composed of carbon atoms arranged in a three-dimensional lattice, also lacks a boiling point as it undergoes direct sublimation. Consequently, carbon, in its pure elemental form, does not possess a boiling point.
Send your message to us
Graphite Crucibles Wholesell/High Strengh CNBM
- Loading Port:
- Tianjin
- Payment Terms:
- TT OR LC
- Min Order Qty:
- 0 m.t.
- Supply Capability:
- 10000 m.t./month
OKorder Service Pledge
OKorder Financial Service
Similar products
Hot products
Hot Searches