• Grade JIS G3141-SPCD-SD Galvanized Steel Coil System 1
  • Grade JIS G3141-SPCD-SD Galvanized Steel Coil System 2
  • Grade JIS G3141-SPCD-SD Galvanized Steel Coil System 3
  • Grade JIS G3141-SPCD-SD Galvanized Steel Coil System 4
  • Grade JIS G3141-SPCD-SD Galvanized Steel Coil System 5
  • Grade JIS G3141-SPCD-SD Galvanized Steel Coil System 6
Grade JIS G3141-SPCD-SD Galvanized Steel Coil

Grade JIS G3141-SPCD-SD Galvanized Steel Coil

Ref Price:
get latest price
Loading Port:
Tianjin
Payment Terms:
TT OR LC
Min Order Qty:
3 m.t.
Supply Capability:
10000 m.t./month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Specification

Type:
Carbon Steel,Spring Steel,Bearing Steel,Gear Steel,Deformed Steel,Stainless Steel,Alloy Steel
Shape:
Steel Coil,Steel Sheet,Steel Wire Rod,Steel Flat Bar,Steel Square Bar,Steel Angle,Steel Round Bar,Steel Billets
Technique:
Hot Rolled,Cold Rolled,Cold Drawn,ERW,Forged,Saw,Extruded,EFW,Spring
Surface Treatment:
Galvanized,Coated,Copper Coated,Color Coated,Oiled,Dry,Chromed Passivation,Polished,Bright,Black,PVDF Coated
Certification:
ISO,SGS,BV,IBR,RoHS,CE,API,BSI,UL
Thickness:
0.13-5.0mm
Width:
600-1570mm
Length:
in coils
Outer Diameter:
in coils
Net Weight:
10m.t.
Packaging:
seaworthy packaging

Grade JIS G3141-SPCD-SD Galvanized Steel Coil

 Specification of JIS G3141-SPCD-SD Galvanized Steel Coil

1. Galvanized Steel Coil    

    (1) Width: 600-1570mm

    (2) Thickness: 0.13-5.0mm

    (3) Grade: JIS G3302-SGCC-SGC570, SGCH (full hard-G550), SGHC-SGH540

                          EN10346-DX51D+Z, DX53D+Z, S250GD-S550GD

                         ASTM A653-CS-B, SS255-SS550

    (4) Zinc Coating: Z40g/m2~Z500g/m2 (both side total coating thickness)

2. Galvalume Steel Coil 

    (1) Width: 600~1500mm

    (2) Thickness: 0.15~2.30mm

    (3) Grade: JIS G3321-SGLCC, SGLC400-570, (G550)

                       EN10346-DX51D+AZ, DX53D+AZ, S250-S550

                      ASTM A792M CS-B, SS255-SS550

    (4) AZ Coating: AZ50~AZ185g/m2

3. Prepainted Galvanized Steel Coil (PPGI) 

    (1) Width: 600~1250mm

    (2) Thickness: 0.19~1.50mm

    (3) Grade: JIS G3312-CGCC, CGC340-570, (G550)

                      ASTM A755M CS-B, SS255-SS550

    (4) Zinc Coating: Z40g/m2~Z500g/m2 (both side total coating thickness)

4. Prepainted Galvanized Steel Coil (PPGL)

    (1) Width: 600~1250mm

    (2) Thickness: 0.20~1.50mm

    (3) Grade: JIS G3322-CGLCC, CGLC340-570, (G550)

                      ASTM A755M CS-B, SS255-SS550

    (4) AZ Coating: AZ50~AZ185g/m2 (both side total coating thickness)

5. Cold Rolled Steel Coil (Soft) (for further information, pls click the product name)

    (1) Width: 600~1570mm

    (2) Thickness: 0.13~2.50mm

    (3) Grade: JIS G3141-SPCC-SD, SPCD-SD, SPEC-SD

                      JIS G3135-SPFC 340/390/440

                      EN10130-DC01, DC03, DC04

                      SAE1006, SAE1008

                      ASTM A424-TypeⅡ

6. Cold Rolled Steel Coil (Full Hard) (for further information, pls click the product name)

    (1) Width: 600~1570mm

    (2) Thickness: 0.13~2.50mm

    (3) Grade: JIS G3141-SPCC-1B, SPCC-1D

7. Hot Rolled Steel Coil 

    (1) Width: 1000~1524mm

    (2) Thickness: 1.20~16.5mm, other thickness can be negotiation

    (3) Grade: JIS G3101-SS400, JIS G3132-SPHT1/2/3, ASTM A36, Q195, Q235 etc.

 

Company Introduction of the Grade JIS G3141-SPCD-SD Galvanized Steel Coil

CNBM International Corporation is the most import and export platform of CNBM group(China National Building Material Group Corporation) ,which is a state-owned enterprise, ranked in 270th of Fortune Global 500 in 2015.

With its advantages, CNBM International are mainly concentrate on Cement, Glass, Iron and Steel, Ceramics industries and devotes herself for supplying high quality series of refractories as well as technical consultancies and logistics solution.

Grade JIS G3141-SPCD-SD Galvanized Steel Coil

Grade JIS G3141-SPCD-SD Galvanized Steel Coil

 

Packaging & Delivery of the Grade JIS G3141-SPCD-SD Galvanized Steel Coil

Packaging Detail

Sea worthy packing /as per customer's packing instruction

Delivery Detail

15 ~ 40 days after receiving the deposit

 

Products Show:

Grade JIS G3141-SPCD-SD Galvanized Steel Coil

FAQ:   

Are you a trading company or manufacturer?

Manufacturer

What’s the MOQ?

3 metric ton

What’s your delivery time? 

15-35 days after downpayment received

Do you Accept OEM service?

Yes

what’s your delivery terms?

FOB/CFR/CIF

What's the Payment Terms?

30% as deposit,70% before shipment by T/T

Western Union acceptable for small amount.

L/C acceptable for large amount.

Scrow ,Paybal,Alipay are also ok

Why  choose  us?

Chose happens because of quality, then price, We can give you both.

Additionally, we can also offer professional products inquiry, products knowledge train (for agents), smooth goods delivery, excellent customer solution proposals.

What's your available port of Shipment?

Main Port, China

What’s your featured  services?

Our service formula: good quality+ good price+ good service=customer's trust

 

Where are your Market?

Covering more than 160 countries in the world

 

Q: How does special steel contribute to the aerospace aftermarket industry?
Special steel plays a crucial role in the aerospace aftermarket industry by providing high-quality materials that meet the demanding requirements of aircraft maintenance and repair. It is used in various aircraft components, such as engine parts, landing gear, and structural elements, where exceptional strength, corrosion resistance, and heat resistance are necessary. Special steel ensures the durability and reliability of these components, allowing for safer and more efficient flight operations. Additionally, its use in the aerospace aftermarket industry helps reduce maintenance costs and downtime, as it enables longer-lasting and more robust aircraft components.
Q: How does special steel contribute to the renewable energy equipment industry?
The renewable energy equipment industry heavily relies on special steel, as it offers the strength, durability, and corrosion resistance needed for different components. Wind turbines, for instance, make extensive use of special steel alloys in their towers, blades, and gearboxes due to their high tensile strength and resistance to fatigue. This allows wind turbines to endure harsh environmental conditions and operate efficiently over extended periods. Additionally, special steel is widely employed in the manufacturing of solar power equipment. Stainless steel is often used to frame solar panels, providing excellent corrosion resistance and structural stability, ensuring their longevity and performance in outdoor settings. Moreover, special steel alloys are utilized in the production of solar trackers, enabling solar panels to track the sun's movement throughout the day and optimize energy generation. In the hydroelectric power industry, special steel is crucial in constructing turbine components such as blades, shafts, and casings. These components face high pressures, water flow, and abrasive wear, making the use of special steel essential for reliability and longevity. Furthermore, special steel is also integral in the production of energy storage systems like batteries and fuel cells. These technologies require materials with high conductivity, corrosion resistance, and mechanical strength, making special steel alloys ideal for their construction. Overall, special steel significantly contributes to the renewable energy equipment industry by providing the necessary strength, durability, and corrosion resistance for various components. Its utilization in wind turbines, solar panels, hydroelectric power systems, and energy storage technologies ensures the reliability and longevity of these equipment, ultimately promoting the growth and sustainability of the renewable energy sector.
Q: What are the different methods for improving the magnetic properties of special steel?
There are several methods that can be employed to improve the magnetic properties of special steel. 1. Heat Treatment: One common method is heat treatment, which involves subjecting the steel to specific heating and cooling processes. This can help to alter the atomic structure of the steel and enhance its magnetic properties. For example, annealing the steel at high temperatures followed by slow cooling can lead to the formation of a fine-grained microstructure, resulting in improved magnetic properties. 2. Alloying: Another approach is to add certain alloying elements to the steel. For instance, the addition of small amounts of elements like nickel, cobalt, or aluminum can significantly enhance the magnetic characteristics of the steel. These alloying elements can help to increase the saturation magnetization and improve the coercivity of the material. 3. Cold Working: Cold working, also known as cold deformation, involves subjecting the steel to mechanical stress at low temperatures. This process can cause the formation of dislocations and defects within the crystal structure of the steel, which can improve its magnetic properties. Cold working can lead to increased magnetization, improved permeability, and reduced hysteresis losses. 4. Grain Orientation: Another method is to align the grains of the steel in a specific direction. This can be achieved through processes like hot rolling or magnetic annealing. By aligning the grains, the steel can exhibit anisotropic magnetic properties, meaning it will have different magnetic characteristics depending on the direction of the applied magnetic field. 5. Surface Treatments: Surface treatments can also be employed to enhance the magnetic properties of special steel. Coatings like electroplating, electroless plating, or chemical vapor deposition can be used to modify the surface of the steel, leading to improved magnetic performance. These treatments can help to reduce eddy current losses, enhance corrosion resistance, and increase the magnetic permeability of the material. It is important to note that the choice of method for improving the magnetic properties of special steel depends on the specific requirements and desired characteristics. Each method has its advantages and limitations, and the selection should be made based on factors such as cost, feasibility, and the desired magnetic performance.
Q: What is the role of special steel in the manufacturing of precision instruments?
Special steel plays a crucial role in the manufacturing of precision instruments as it provides the necessary strength, durability, and resistance to corrosion required for these delicate instruments to perform accurately and reliably. The unique properties of special steel enable precision instruments to withstand extreme conditions, maintain dimensional stability, and ensure high precision measurements, making it an essential material in their production.
Q: Can special steel be used in railway applications?
Yes, special steel can be used in railway applications. Special steel, such as high-strength steel or corrosion-resistant steel, can offer enhanced durability, strength, and resistance to wear and tear in railway components, tracks, and infrastructure. This allows for safer and more efficient railway operations.
Q: What are the different inspection methods used for special steel?
There are several inspection methods used for special steel, including visual inspection, magnetic particle inspection, ultrasonic inspection, and dye penetrant inspection. Visual inspection involves examining the steel for any surface defects or irregularities. Magnetic particle inspection uses magnetic fields and iron particles to detect any cracks or defects in the steel. Ultrasonic inspection involves sending high-frequency sound waves through the steel to identify any internal flaws or defects. Dye penetrant inspection involves applying a colored liquid to the steel's surface, which seeps into any cracks or defects, revealing their presence. These methods help ensure the quality and integrity of special steel products.
Q: What are the advantages of using special steel?
Special steel offers several advantages over regular steel. Firstly, it has superior strength and hardness, making it more durable and resistant to wear and tear. This makes it ideal for applications that require high strength and toughness, such as in the manufacturing of tools, machinery, and automotive parts. Additionally, special steel has excellent corrosion resistance, which helps prolong the lifespan of products exposed to harsh environments or corrosive substances. Moreover, it exhibits better heat resistance, allowing it to withstand high temperatures without losing its strength or shape, making it suitable for use in the aerospace and energy industries. Lastly, special steel can be customized to meet specific requirements, allowing manufacturers to create components with precise dimensions and properties, enhancing overall performance and efficiency.
Q: Is special steel suitable for medical equipment manufacturing?
Indeed, medical equipment manufacturing is well-suited for special steel. Often referred to as stainless steel, special steel is widely utilized in the creation of medical equipment due to its distinct characteristics. Its exceptional resistance to corrosion is of utmost importance in maintaining the hygiene and cleanliness standards mandated in medical settings. Moreover, special steel boasts remarkable strength and durability, guaranteeing that the equipment can endure frequent use and sterilization processes without compromising its quality. Furthermore, special steel can be effortlessly molded and shaped into intricate designs, making it an ideal choice for fabricating complex medical instruments and devices. In summary, the utilization of special steel in medical equipment manufacturing ensures the production of dependable and enduring products that meet the rigorous requirements of the healthcare industry.
Q: How does special steel contribute to reducing product defects?
Special steel contributes to reducing product defects by offering superior strength, durability, and corrosion resistance compared to regular steel. This ensures that the components made from special steel are less prone to breakage, wear and tear, or damage during manufacturing, transportation, or usage. Special steel's high-quality characteristics provide a more reliable and consistent performance, resulting in fewer product defects and improved overall product quality.
Q: What are the key differences between special steel and tool steel?
Special steel and tool steel are both types of steel that have specific properties and applications. However, there are some key differences between the two. 1. Composition: Special steel is a broad term that encompasses a variety of steel alloys with specific properties for different applications. It can include stainless steel, high-strength alloy steel, and heat-resistant steel, among others. On the other hand, tool steel is a specific type of special steel that is designed to be used in the production of tools, dies, and molds. Tool steel typically contains higher levels of carbon and other alloying elements like chromium, vanadium, or tungsten, which enhance its hardness, wear resistance, and toughness. 2. Hardness and wear resistance: Tool steel is known for its exceptional hardness and wear resistance, which makes it ideal for cutting, shaping, and forming materials. It can withstand high temperatures and resist deformation, ensuring the longevity of tools and dies. Special steel, on the other hand, may not have the same level of hardness and wear resistance as tool steel, as its properties vary depending on the specific alloy and application. Special steel alloys may prioritize other properties like corrosion resistance or strength. 3. Manufacturing processes: Tool steel is often produced through specialized manufacturing processes like hot working, cold working, or heat treatment to achieve the desired properties. The production of tool steel involves precise control of temperature and cooling rates to achieve the required hardness and toughness. Special steel, on the other hand, may undergo various manufacturing processes depending on the desired properties. These can include forging, casting, or heat treatment, among others. 4. Applications: Tool steel is primarily used in the production of tools, dies, and molds for manufacturing processes such as cutting, shaping, and forming materials. It is commonly used in industries like automotive, aerospace, and machinery. Special steel, on the other hand, has a wide range of applications depending on the specific alloy and properties. It can be used in industries such as construction, energy, and manufacturing, where specific properties like corrosion resistance, heat resistance, or strength are required. In summary, the key differences between special steel and tool steel lie in their composition, hardness, wear resistance, manufacturing processes, and applications. While special steel is a broad term for various steel alloys with specific properties, tool steel is a specific type of special steel designed for tooling applications. Tool steel is characterized by its exceptional hardness and wear resistance, making it ideal for cutting and shaping materials, while special steel can have a broader range of properties depending on the specific alloy and application.

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

Hot products


Hot Searches

Related keywords