• DUCTILE IRON PIPE AND PIPE FITTINGS K7 CLASS DN1000 System 1
  • DUCTILE IRON PIPE AND PIPE FITTINGS K7 CLASS DN1000 System 2
DUCTILE IRON PIPE AND PIPE FITTINGS K7 CLASS DN1000

DUCTILE IRON PIPE AND PIPE FITTINGS K7 CLASS DN1000

Ref Price:
get latest price
Loading Port:
Tianjin
Payment Terms:
TT OR LC
Min Order Qty:
23 pc
Supply Capability:
3000 pc/month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

·         Material : Ductile Cast Iron

·         Size Range : DN 80mm to DN 2000mm

·         Unit Effective Length : 6m or 5.7m

·         Manufacture Standard: ISO 2531:1998/ EN 545:2006/EN 598:2007

·         Annual capacity : 200,000 tons

·         Coating Exterior: Zinc 130g/m2 according to ISO 8179-1 and bitumen coating 70 microns.

·         Cement Interior: Portland Cement/ High Alumina Cement/ Sulphate Resisting Cement Lining according to ISO 4179

·         Special requirements on external coating and internal lining can be applied

·         We also provide accessories such as SBR/EPDM rubber gaskets, lubricant paste, pipe caps, PE sleeves, etc.

Additional Parts:

  • Each pipe is strictly inspected according to related standard to ensure permanently high performance.

  • Easy Installation at site and service free for life

  • Long Service Lifespan

  • Quotation will arrive you within 24hours once we get your inquiry.

  • We guarantee offering you a competitive price.

  • A copy of original inspection reports of pipes will be offered after shipment.

  • Photos of loading process will be sent to the customer after shipment effect.

  • We will follow-up the delivery progress after shipment effect and update to the customer on weekly basis.

 

 

Q: Are ductile iron pipes resistant to acid attacks?
Yes, ductile iron pipes are generally resistant to acid attacks. Ductile iron is a type of cast iron that has been treated with magnesium to improve its strength and ductility. This treatment creates a more resistant material that can withstand corrosive environments, including acids. However, it is important to note that the level of resistance may vary depending on the specific acid and concentration involved. In highly corrosive environments, such as those with strong acids or high concentrations, additional protective measures such as lining or coating the pipes may be necessary. Additionally, regular inspection and maintenance are also important to ensure the long-term durability and resistance of ductile iron pipes.
Q: What is the maximum allowable joint deflection for ductile iron pipes?
The maximum allowable joint deflection for ductile iron pipes varies based on the specific design and application requirements. However, it is generally recommended to limit joint deflection to a maximum of 5% of the pipe diameter to ensure the structural integrity and longevity of the pipeline.
Q: How do ductile iron pipes compare to PVC pipes in terms of strength?
PVC pipes are generally considered to be less strong than ductile iron pipes. Ductile iron, a type of cast iron, is strengthened and made more flexible through the addition of small amounts of magnesium. This treatment enhances its resistance to cracking and breaking under pressure, making it suitable for various applications including water and wastewater transportation. In contrast, PVC pipes are made from a plastic known as polyvinyl chloride. While PVC pipes are relatively durable, they do not possess the same level of strength as ductile iron pipes. They are more susceptible to cracking and breaking when subjected to high pressure or extreme temperature changes. PVC pipes are commonly utilized in low-pressure systems such as irrigation and drainage. In terms of strength, ductile iron pipes exhibit greater tensile strength and can endure higher internal and external pressures compared to PVC pipes. Additionally, ductile iron pipes have a higher resistance to impacts, reducing the likelihood of damage from external forces like heavy machinery or accidental impacts. However, it is important to consider specific project requirements when choosing between ductile iron and PVC pipes. Factors such as cost, ease of installation, corrosion resistance, and the nature of the fluid being transported should all be taken into account.
Q: How do ductile iron pipes handle heavy traffic loads?
Ductile iron pipes possess exceptional durability and have the ability to effortlessly withstand heavy traffic loads. This is primarily attributed to their remarkable strength and flexibility. The incorporation of graphite nodules in the composition of ductile iron allows for greater flexibility compared to traditional cast iron pipes. This enhanced flexibility empowers the pipes to endure substantial traffic loads, including the weight of vehicles traversing over them. Moreover, ductile iron pipes exhibit an elevated load-bearing capacity, enabling them to bear significant weights without experiencing any deformation or structural failure. Consequently, they are well-suited for deployment in areas characterized by heavy traffic, such as highways, bridges, and industrial sites. Furthermore, ductile iron pipes showcase exceptional resistance to external forces, such as vibrations and impacts. These pipes can effectively absorb and distribute these forces across the entire pipe network, thereby averting any potential damage and preserving the overall structural integrity. In conclusion, ductile iron pipes are explicitly engineered to manage the demands imposed by heavy traffic loads. Their strength, flexibility, and load-bearing capacity render them a dependable choice for infrastructure projects where durability and longevity are of utmost importance.
Q: Can ductile iron pipes be used for geothermal energy systems?
Certainly, geothermal energy systems can utilize ductile iron pipes. Ductile iron, being a robust and long-lasting substance, possesses the capacity to endure the frequently encountered elevated temperatures and pressures in geothermal energy systems. Its ability to resist corrosion and exhibit high tensile strength renders it a perfect selection for conveying geothermal fluids. Furthermore, the ease of joining ductile iron pipes permits flexibility and adaptability during the design and installation phases. All in all, ductile iron pipes prove to be a trustworthy and economically viable alternative for geothermal energy systems.
Q: What is the expected fatigue life of ductile iron pipes under cyclic loading?
The expected fatigue life of ductile iron pipes under cyclic loading can vary depending on various factors such as the magnitude and frequency of the cyclic loading, the quality of the material, the design and installation of the pipes, and the environmental conditions. Ductile iron is known for its high strength and ductility, which enables it to withstand cyclic loading to a certain extent. However, like any other material, it is also susceptible to fatigue failure over time. To estimate the expected fatigue life of ductile iron pipes, engineers often utilize fatigue analysis and testing methods. These methods involve subjecting representative samples of the pipes to cyclic loading under controlled conditions and measuring the number of cycles required for failure to occur. The results of these tests are then used to extrapolate the expected fatigue life of the pipes under similar loading conditions. It is important to note that the expected fatigue life can vary significantly depending on the specific conditions and loading patterns experienced by the pipes in a given application. Therefore, it is crucial to consider factors such as the operational demands, maintenance practices, and the overall structural integrity of the pipeline system. Additionally, the use of appropriate design standards and guidelines, along with regular inspection and maintenance, can help enhance the fatigue life of ductile iron pipes. In summary, while it is challenging to provide a specific value for the expected fatigue life of ductile iron pipes under cyclic loading, engineers can estimate it through fatigue analysis and testing methods. It is essential to consider various factors and maintain the pipes properly to ensure their longevity and prevent potential failures.
Q: Which is better, ductile iron pipe and spray plastic pipe?
Ductile cast iron: the use of more than 18 by adding nodulizer, after centrifugal ductile cast iron machine high speed centrifugal cast pipe, called "ductile" (Ductile Cast Iron Pipes), referred to as ball pipe, ductile iron pipe and ductile iron pipe etc.. The utility model is mainly used for conveying water, and is an ideal choice for tap water pipes.
Q: How are ductile iron pipes made?
Ductile iron pipes are made through a process called centrifugal casting. In this method, molten iron is poured into a rapidly spinning mold, which forces the iron to evenly distribute along the walls of the mold. As the mold continues to spin, the iron cools and solidifies, forming a hollow cylindrical shape. This process allows the iron to retain its strength and flexibility, making it suitable for use in various piping applications.
Q: Can ductile iron pipe be used for hydroelectric power generation?
Hydroelectric power generation is made possible with the use of ductile iron pipes. Ductile iron, a type of cast iron known for its strength, durability, and resistance to corrosion, is well-suited for a range of applications, including the construction of hydroelectric power generation systems. One specific application of ductile iron pipes in hydroelectric power plants is for water conveyance. These pipes, commonly referred to as penstocks, play a vital role in transporting water from the reservoir to the turbines. Given the high pressure and flow rates involved, ductile iron pipes are capable of withstanding these demanding conditions. Moreover, the resistance of ductile iron pipes to corrosion is particularly essential in hydroelectric power generation. The water used in this process can be highly corrosive due to its composition and the presence of impurities. By utilizing ductile iron pipes, the system remains sturdy and durable over time, resulting in reduced maintenance and replacement expenses. Furthermore, the versatility of ductile iron pipes allows for easy joining using different methods such as flanged, mechanical, or push-on joints. This facilitates efficient and reliable installation, ensuring the integrity of the water conveyance system in hydroelectric power plants. In conclusion, ductile iron pipe is a suitable choice for hydroelectric power generation due to its strength, durability, corrosion resistance, and ease of installation. Its utilization in penstocks and other water conveyance systems contributes to the efficient and dependable operation of hydroelectric power plants.
Q: Can ductile iron pipes be used for irrigation pivot systems?
Yes, ductile iron pipes can be used for irrigation pivot systems. Ductile iron pipes have high tensile strength and durability, making them suitable for handling the pressure and load requirements of irrigation pivot systems. Additionally, their corrosion resistance makes them a reliable choice for long-term use in such applications.

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

Hot products


Hot Searches

Related keywords