• Diameter 30-60mm Bearing Steel Round Bar System 1
  • Diameter 30-60mm Bearing Steel Round Bar System 2
  • Diameter 30-60mm Bearing Steel Round Bar System 3
  • Diameter 30-60mm Bearing Steel Round Bar System 4
Diameter 30-60mm Bearing Steel Round Bar

Diameter 30-60mm Bearing Steel Round Bar

Ref Price:
get latest price
Loading Port:
Tianjin
Payment Terms:
TT or LC
Min Order Qty:
500 m.t.
Supply Capability:
1000000 m.t./month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

 Product Description:

OKorder is offering Diameter 30-60mm Bearing Steel Round Bar at great prices with worldwide shipping. Our supplier is a world-class manufacturer of steel, with our products utilized the world over. OKorder annually supplies products to European, North American and Asian markets. We provide quotations within 24 hours of receiving an inquiry and guarantee competitive prices.

 

Product Applications:

Diameter 30-60mm Bearing Steel Round Bar are ideal for structural applications and are widely used in the construction of buildings and bridges, and the manufacturing, petrochemical, and transportation industries.

 

Product Advantages:

OKorder's Diameter 30-60mm Bearing Steel Round Bar are durable, strong, and resist corrosion.

 

Main Product Features:

·         Premium quality

·         Prompt delivery & seaworthy packing (30 days after receiving deposit)

·         Corrosion resistance

·         Can be recycled and reused

·         Mill test certification

·         Professional Service

·         Competitive pricing

 

Product Specifications: 

Grade

AISI 52100, ASTM E52100, DIN 1.3505,JIS SUJ2, GCr15

Dimensions

Diameter: 30-60mm

Length: 2000-13000mm or as required

Shape

Round Bar

Type

Alloy Steel Bar

Delivery Condition

Black Surface

Material

Bearing Steel

Technique

Hot Rolled

 

Usage and Applications of Bearing Steel Round Bar

Bearing steels are used for ball and roller bearing applications and are comprised of low carbon steels and high carbon through harden able steel.

 First the famous 1C-1.5Cr steel from which the majority of bearings are made. Its structure is apparently well-understood and the focus is on purity in order to avoid inclusions which initiate fatigue during rolling contact. Then there is the M50 steel and its variants, from which bearings which serve at slightly higher temperatures in aeroengines are manufactured, based on secondary-hardened martensite.

 Tapered roller bearing are generally used to support combined load mainly consisting of radial load. Their cups are separable for easy assembling ,During mounting and using, radial clearance and axial clearance can be adjusted and preloaded mounting can be made.

 

Packaging & Delivery of Bearing Steel Round Bar

Packaging Detail: ASTM 52100 Steel in seaworthy packing or on customer request; Packed in bundles with standard export sea-worthy package or as customer require

Delivery Detail: 45 days after confirmed

Trade terms: FOB, CFR, CIF ou as customer's required

MOQ: 25 tons or at customer's demands. If the quantity is good, the price will be better.

 

Processing of Bearing Steel Round Bar

The processing of Bearing Steel Round Bar is hot rolled (strictly control sulphur, phosphorus and non-metallic inclusions content and distribution)

 

Chemical Composition of Bearing Steel Round Bar

C

Si

Mn

Cr

Ni

Cu

Equal or less than

0.95-1.05

0.15-0.35

0.25-0.45

Cr:1.40-1.65

0.30

0.25

 All products' chemical composition and specification can be design according to customers' requirement.

 

Note of Bearing Steel Round Bar

1. According to national standard (GB) for our products, if not, supply according to national standards (GB) or agreement.

2. We can not only provide electric furnace +LF+VD and electros lag re-melting (ESR) steel forging materials, but also forging products of piece, bar, etc.

3. Our company is equipped with roll equipment and can provide our customers with roll billets or finished.

4. Please send us your detailed specifications when inquire. We will reply to you ASAP.

5. Certificate of quality is issued in English, in addition the normal terms, production process, the mechanical property (yield strength, tensile strength, elongation and hardness. forged ratio, UT test result, Grain size, heat treatment methods and the sample of is shown on the certificate of quality.

 

FAQ:

Q1: Why buy Materials & Equipment from OKorder.com?

A1: All products offered byOKorder.com are carefully selected from China's most reliable manufacturing enterprises. Through its ISO certifications, OKorder.com adheres to the highest standards and a commitment to supply chain safety and customer satisfaction.

Q2: How do we guarantee the quality of our products?

A2: We have established an advanced quality management system which conducts strict quality tests at every step, from raw materials to the final product. At the same time, we provide extensive follow-up service assurances as required.

Q3: How soon can we receive the product after purchase?

A3: Within three days of placing an order, we will begin production. The specific shipping date is dependent upon international and government factors, but is typically 7 to 10 workdays.

 

Diameter 30-60mm Bearing Steel Round Bar

 

Q:How does special steel contribute to the manufacturing of turbine blades?
Special steel plays a crucial role in the manufacturing of turbine blades due to its unique properties and characteristics. Turbine blades are subjected to extreme conditions, such as high temperatures, high rotational speeds, and constant exposure to air and steam. These demanding operating conditions require materials that can withstand such harsh environments while maintaining their structural integrity and performance. Special steel, also known as superalloys, possesses a combination of exceptional mechanical properties, heat resistance, and corrosion resistance, making it an ideal choice for turbine blade manufacturing. The high temperature resistance of special steel allows turbine blades to operate efficiently at elevated temperatures without significant deformation or failure. One of the key properties of special steel is its ability to retain strength and hardness even at high temperatures. This characteristic is crucial for turbine blades as they are constantly exposed to hot gases and steam in power generation applications. Special steel's resistance to creep, a phenomenon where materials deform under prolonged exposure to high temperatures and mechanical stress, ensures that turbine blades maintain their shape and structural integrity over time. Moreover, special steel exhibits excellent corrosion resistance, protecting turbine blades from oxidation and other forms of degradation caused by the aggressive operating environment. This corrosion resistance is particularly important in gas turbines, as the combustion process produces corrosive gases and particles that can damage the blades. Special steel's ability to resist oxidation and corrosion ensures the longevity and reliability of turbine blades. Additionally, special steel offers high strength-to-weight ratios, enabling the design and manufacture of lightweight turbine blades. This lightweight characteristic allows for improved aerodynamic performance and reduced energy consumption, as the turbine blades require less force to rotate at high speeds. In summary, special steel significantly contributes to the manufacturing of turbine blades by providing exceptional mechanical properties, heat resistance, corrosion resistance, and lightweight characteristics. These properties ensure that turbine blades can withstand the extreme conditions of power generation applications, ultimately enhancing their performance, longevity, and overall efficiency.
Q:What are the different methods of surface coloring for special steel?
There are several methods of surface coloring for special steel, including electroplating, hot-dip galvanizing, powder coating, and physical vapor deposition (PVD). Each method offers unique benefits and can be chosen based on factors such as desired appearance, durability, corrosion resistance, and cost-effectiveness.
Q:How does special steel perform in high-stress environments?
Special steel is specifically designed to perform exceptionally well in high-stress environments. Its unique composition and manufacturing process make it highly resistant to various forms of stress, such as mechanical, thermal, and chemical stress. One of the key properties of special steel is its high tensile strength, which allows it to withstand immense pressure without deformation or failure. This strength is achieved through the addition of alloying elements, such as chromium, nickel, and molybdenum, which enhance its structural integrity and toughness. The presence of these elements also increases the steel's resistance to corrosion and oxidation, making it more durable and reliable in harsh environments. Moreover, special steel exhibits excellent fatigue resistance, enabling it to withstand repetitive and cyclic loading without developing cracks or fractures. This property is crucial in high-stress environments where components are subjected to constant vibrations or cyclic loading, such as in aerospace, automotive, and industrial applications. In addition to its mechanical properties, special steel is also highly resistant to extreme temperatures. It can maintain its strength and integrity even at elevated temperatures, making it suitable for applications in high-temperature environments such as power plants, furnaces, and chemical processing industries. Furthermore, special steel has excellent wear resistance, which enables it to withstand abrasive conditions, such as those encountered in mining, construction, or manufacturing processes. This reduces the need for frequent maintenance or replacement, resulting in cost savings and increased productivity. Overall, special steel's exceptional performance in high-stress environments can be attributed to its unique combination of strength, durability, corrosion resistance, fatigue resistance, temperature resistance, and wear resistance. Its ability to withstand extreme conditions makes it an ideal choice for critical applications where reliability and safety are paramount.
Q:Can special steel be used in the production of musical instruments?
Musical instruments can indeed benefit from the use of special steel. This type of steel, also known as tool steel or high-performance steel, has been specifically engineered to possess certain characteristics that make it suitable for specific applications. These characteristics include exceptional strength, durability, and resistance to both wear and corrosion. When it comes to musical instruments, special steel can be utilized in various components such as strings, springs, keys, valves, and reeds. For instance, piano strings are typically crafted from high-carbon steel, which provides the necessary strength and elasticity to produce the desired sound. Brass instruments like trumpets or saxophones have valves made from special steel alloys, which possess excellent corrosion resistance and can endure the repetitive movements required during play. Furthermore, special steel can also be employed in the production of instrument parts like guitar frets. Frets are metal strips embedded along the guitar's fingerboard, and they must be constructed from a material that is durable, wear-resistant, and able to maintain its shape over time. Special steel alloys, such as stainless steel or nickel-silver, are commonly chosen for this purpose. In summary, special steel brings forth a variety of properties that can improve the performance and longevity of musical instruments. With the utilization of this type of steel, manufacturers can create instruments that produce high-quality sound, withstand wear and tear more effectively, and enjoy a longer lifespan.
Q:What are the applications of special steel in the aerospace sector?
Special steel has numerous applications in the aerospace sector due to its exceptional properties and capabilities. Firstly, special steel is used in the manufacturing of aircraft engines. The high strength and temperature resistance of special steel make it ideal for components such as turbine blades and discs, which are subjected to extreme heat and stress during operation. Special steel also offers excellent corrosion resistance, ensuring the longevity and reliability of critical engine parts. Another application of special steel in the aerospace sector is in the construction of aircraft structures. Special steel alloys are utilized to fabricate landing gear, wing components, and other structural elements. The high strength-to-weight ratio of special steel enables the production of lightweight yet robust structures, contributing to fuel efficiency and overall performance. Special steel is also employed in the production of aerospace fasteners. These include bolts, nuts, and screws that hold various aircraft components together. The exceptional mechanical properties and resistance to fatigue and vibration of special steel make it an ideal material for fasteners, ensuring the integrity and safety of aircraft assemblies. Furthermore, special steel finds application in aerospace tooling and equipment. Tools used in the manufacturing process, such as cutting tools and molds, are often made from special steel. Its high hardness and wear resistance enable efficient and precise machining of aerospace components. Additionally, special steel is utilized in the production of specialized equipment, such as test rigs, calibration devices, and ground support equipment, which are crucial for aerospace operations and maintenance. In summary, special steel plays a vital role in the aerospace sector. Its use in aircraft engines, structures, fasteners, and tooling contributes to the overall safety, performance, and reliability of aerospace systems. The unique properties of special steel make it an indispensable material for the demanding and critical applications within the aerospace industry.
Q:How is special steel heat treated?
Special steel is heat treated using a combination of heating and cooling processes to improve its strength, hardness, and other desired properties. This typically involves heating the steel to a specific temperature, known as the austenitizing temperature, followed by rapid cooling, known as quenching, to transform the steel's microstructure. This is then followed by tempering, where the steel is reheated to a lower temperature to relieve internal stresses and further enhance its mechanical properties. The specific heat treatment process and parameters vary depending on the type of special steel and the desired final properties.
Q:What is the role of special steel in the construction industry?
Special steel plays a critical role in the construction industry as it offers enhanced strength, durability, and resistance to corrosion, making it suitable for various applications. It is used in the construction of buildings, bridges, and other infrastructure projects to ensure structural integrity, safety, and longevity. Additionally, special steel's versatility allows for customization to meet specific project requirements, making it an essential material in the construction industry.
Q:How does special steel perform in high-vibration applications?
Special steel performs exceptionally well in high-vibration applications due to its superior strength, durability, and resistance to fatigue. These properties enable it to withstand intense vibrations without compromising its structural integrity, resulting in enhanced performance and extended service life in such demanding conditions.
Q:What are the different non-destructive testing methods used for special steel?
There are several non-destructive testing methods used for special steel, including ultrasonic testing, magnetic particle testing, liquid penetrant testing, radiographic testing, and eddy current testing. These methods help to detect any defects or flaws in the steel without causing any damage. Ultrasonic testing uses high-frequency sound waves to evaluate the internal structure of the steel, while magnetic particle testing and liquid penetrant testing are used to detect surface defects through the use of magnetic fields and dye penetrants, respectively. Radiographic testing involves the use of X-rays or gamma rays to examine the internal structure of the steel. Eddy current testing, on the other hand, uses electromagnetic induction to detect surface or near-surface defects. Overall, these non-destructive testing methods play a crucial role in ensuring the quality and integrity of special steel.
Q:What are the different automotive grades of special steel?
There are several different automotive grades of special steel, including stainless steel, high-strength steel, advanced high-strength steel, and ultra-high-strength steel. These grades offer varying levels of corrosion resistance, durability, and strength, making them suitable for different automotive applications.

1. Manufacturer Overview

Location
Year Established
Annual Output Value
Main Markets
Company Certifications

2. Manufacturer Certificates

a) Certification Name  
Range  
Reference  
Validity Period  

3. Manufacturer Capability

a)Trade Capacity  
Nearest Port
Export Percentage
No.of Employees in Trade Department
Language Spoken:
b)Factory Information  
Factory Size:
No. of Production Lines
Contract Manufacturing
Product Price Range

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

Hot products


Hot Searches

Related keywords