• 9CrWMn Mould Steel Special Steel Carbon Steel System 1
  • 9CrWMn Mould Steel Special Steel Carbon Steel System 2
  • 9CrWMn Mould Steel Special Steel Carbon Steel System 3
9CrWMn Mould Steel Special Steel Carbon Steel

9CrWMn Mould Steel Special Steel Carbon Steel

Ref Price:
get latest price
Loading Port:
China main port
Payment Terms:
TT OR LC
Min Order Qty:
25 m.t.
Supply Capability:
10000 m.t./month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Specification

Type:
Alloy Steel
Shape:
Steel Round Bar
Standard:
AISI,JIS,GB,BS,DIN,API,EN,ASTM
Thickness:
as required
Technique:
Hot Rolled,Cold Rolled,Cold Drawn,ERW,Forged,Extruded,EFW,Spring
Shape:
U Channel,Square,C Channel,Hexagonal,Round
Surface Treatment:
Galvanized,Coated,Copper Coated,Color Coated,Oiled,Dry,Chromed Passivation,Polished,Bright,Black,PVDF Coated
Steel Grade:
Q195,Q215,Q235,Q215B,Q235B,RHB335,HRB400,200 Series,300 Series,400 Series,600 Series,SS400-SS490,10#,20#,A53(A,B)
Certification:
ISO,SGS,BV,IBR,RoHS,CE,API,BSI,UL
Length:
as required
Net Weight:
as required

Chemical Composition(%)

Country

Standard

C

Si

Mn

Cr

W

S

P

Other

China(GB)

9CrWMn

0.85-0.95

0.40

0.90-1.20

0.50-0.80

0.50-0.80

0.30

≤0.30


USA(ASTM)

O1

0.85-0.95

0.20-0.40

1.00-1.30

0.40-0.60

0.40-0.60

-

-

V:0.20

Germany(DIN)

1.2510

0.90-1.05

0.15-0.35

1.00-1.20

0.50-0.70

0.50-0.70

≤0.35

≤0.35

V:0.05-0.15

Japan(JIS)

SKS3

0.90-1.00

≤0.35

0.90-1.20

0.50-1.00

0.50-1.00

≤0.30

≤0.30


 

Available Size

Rolled flat steel :12-90mm × 205-610mm × L


Heat Treatment

Processing

Temperature ℃

Hardness

Anneal

740-770

≤255HB

Quenching

790-840

62-65HRC

Tempering

180-250

58-62HRC

 

Characterstics

1.High-carbon and low-alloyed oil quenching tool steel adopted widely in world

2.Higher hardening ability 

3.Less deformation after heat treatment 

4.High hardness and better abrasion resistance

 

Applications: Suitable for steel punching dies,shearing blades,measuring devices,thermosetting plastic moulds,etc

9CrWMn Mould Steel Special Steel Carbon Steel

.jpg

1, Your advantages?

     professional products inquiry, products knowledge train (for agents), smooth goods delivery, excellent customer solution proposale

2, Test & Certificate?

      SGS test is available, customer inspection before shipping is welcome, third party inspection is no problem

3, Payment Terms?

    30% TT as deposit and 70% before delivery.

    Irrevocable L/C at sight.

4, Trading Terms?

    EXW, FOB, CIF, FFR, CNF

6, After-sale Service?

    We provides the services and support you need for every step of our cooperation. We're the business partner you can trust.

     For any problem, please kindly contact us at any your convenient time.

We'll reply you in our first priority within 24 hours.


Q: How does special steel perform in cryogenic ductility?
Special steel exhibits excellent performance in terms of cryogenic ductility. Cryogenic ductility refers to a material's ability to retain its strength and flexibility even at extremely low temperatures. Special steels are engineered specifically to endure harsh conditions, including cryogenic temperatures, making them suitable for applications such as LNG storage tanks, aerospace components, and superconductors. The composition of special steel is one of the key reasons for its exceptional cryogenic ductility. Generally, special steels are alloyed with elements like nickel, chromium, and molybdenum, which enhance their mechanical properties and resistance to low temperatures. These alloying elements provide the steel with increased strength, toughness, and resistance to brittle fracture, even in extremely cold environments. Moreover, special steels go through rigorous testing and quality control measures to ensure their performance in cryogenic conditions. This involves testing for parameters such as impact toughness, fracture toughness, and notch toughness, which are critical in assessing a material's ability to withstand brittle failure at low temperatures. Additionally, the manufacturing processes employed for special steel contribute to its excellent cryogenic ductility. Methods like vacuum induction melting and controlled cooling are often utilized to produce special steels. These techniques aid in eliminating impurities and improving the material's microstructure. This refined microstructure enhances the steel's ductility, enabling it to retain its mechanical properties even in cryogenic temperatures. In conclusion, special steel exhibits exceptional performance in terms of cryogenic ductility due to its meticulously designed composition, stringent testing, and advanced manufacturing processes. These factors make it a dependable and preferred choice for various industries that require materials capable of withstanding extreme cold conditions while maintaining strength and flexibility.
Q: What are the most common alloys used in special steel?
The most common alloys used in special steel are chromium, nickel, molybdenum, and vanadium.
Q: How is heat-resistant steel used in high-temperature applications?
Heat-resistant steel is used in high-temperature applications due to its ability to withstand elevated temperatures without losing its structural integrity. This type of steel is commonly used in industries such as aerospace, power generation, and petrochemicals, where it is essential to maintain the strength and performance of components exposed to extreme heat. Heat-resistant steel is used in the construction of furnaces, boilers, heat exchangers, and other equipment that operate under high temperatures, ensuring their reliability and longevity even in challenging environments.
Q: How does special steel perform under high-temperature conditions?
Special steel is specifically designed to perform well under high-temperature conditions. It exhibits excellent resistance to thermal expansion, oxidation, and creep, allowing it to maintain its structural integrity and mechanical properties when exposed to elevated temperatures. The unique composition of special steel, which often includes elements such as chromium, nickel, and molybdenum, contributes to its high-temperature performance. These alloying elements form a protective oxide layer on the surface of the steel, known as passivation, which acts as a barrier against corrosion and further enhances its resistance to high temperatures. Additionally, the microstructure of special steel is carefully controlled through various heat treatment processes, such as quenching and tempering, to achieve optimal toughness and strength even at elevated temperatures. Overall, special steel demonstrates exceptional performance and reliability in high-temperature environments, making it a preferred choice for applications such as power generation, aerospace, and petrochemical industries.
Q: What are the different forging grades of special steel?
In the market, there exists a variety of forging grades for special steel, each possessing its own distinctive characteristics and applications. Among the most frequently utilized forging grades are: 1. Carbon Steel: Noted for its exceptional strength and durability, carbon steel is a favored option for forging. Its hardness and toughness are determined by the varying levels of carbon present. Carbon steel forgings find widespread usage in the automotive, construction equipment, and machinery industries. 2. Alloy Steel: By incorporating diverse alloying elements, such as manganese, chromium, nickel, or molybdenum, into carbon steel, alloy steel is created. This augmentation enhances its strength, corrosion resistance, and wear resistance. The aerospace, defense, oil and gas, and power generation sectors extensively employ alloy steel forgings. 3. Stainless Steel: Stainless steel, an alloy resistant to corrosion, contains a minimum of 10.5% chromium. It boasts remarkable resistance against rust and staining, rendering it suitable for applications in harsh environments or where hygiene is of utmost importance. Stainless steel forgings are commonly employed in the food processing, chemical, and medical industries. 4. Tool Steel: Tailor-made for utilization in cutting tools, molds, and dies, tool steel exhibits high hardness, wear resistance, and toughness, enabling it to withstand elevated temperatures and heavy loads. Tool steel forgings are utilized in the production of drills, saw blades, punches, and an array of precision tools. 5. High-Speed Steel: High-speed steel, a specific type of tool steel, retains its hardness even when employed at high speeds. It incorporates additional elements such as tungsten, molybdenum, or vanadium, which enhance its resistance to heat and wear. High-speed steel forgings are employed in the production of cutting tools, drills, and milling cutters. 6. Maraging Steel: Maraging steel, a low-carbon, high-nickel steel alloy, is renowned for its extraordinary strength and toughness. Through heat treatment, it achieves high tensile strength while maintaining good ductility. Maraging steel forgings find extensive application in the aerospace, defense, and missile systems industries. These aforementioned examples merely represent a selection of the diverse forging grades of special steel available in the market. Each grade proffers distinct properties tailored to specific applications, ensuring the appropriate material can be chosen to meet desired performance and durability requirements.
Q: How does electrical steel minimize energy losses in electrical devices?
Electrical steel minimizes energy losses in electrical devices through its unique magnetic properties and composition. It is specifically designed to have low electrical conductivity and high magnetic permeability, which reduces eddy current losses and hysteresis losses. These losses occur due to the alternating magnetic fields generated in electrical devices, such as transformers and motors. By using electrical steel, these losses are minimized, resulting in more efficient energy transfer and reduced energy wastage.
Q: How does special steel contribute to the thermal conductivity of products?
The unique composition and properties of special steel significantly enhance the thermal conductivity of products. By incorporating specific alloying elements like chromium, nickel, molybdenum, or vanadium, the thermal conductivity of special steel is improved. These alloying elements increase the free electron density within the steel, facilitating efficient heat transfer. The presence of alloying elements in special steel improves its lattice structure, enabling better heat transfer. The increased free electron density allows for quick and efficient movement of thermal energy through the material. Consequently, special steel effectively conducts heat from one area to another, making it suitable for applications requiring high thermal conductivity. Moreover, special steel undergoes advanced techniques like heat treatment, forging, or rolling, which further optimize its properties. These processes refine the microstructure, reducing impurities and enhancing thermal conductivity. As a result, the resulting steel product exhibits improved heat transfer capabilities and offers efficient thermal management. The remarkable thermal conductivity of special steel makes it highly sought after in various industries and applications. It finds extensive use in manufacturing heat exchangers, boilers, furnaces, and other thermal equipment where efficient heat transfer is crucial. Additionally, special steel is commonly employed in electrical appliances such as stovetops or induction cookers, where rapid and uniform heat distribution is necessary. To sum up, special steel enhances the thermal conductivity of products by utilizing specific alloying elements and advanced processing techniques. Its high thermal conductivity makes it invaluable in various industries, ensuring efficient heat management and optimal performance of thermal equipment and appliances.
Q: How does special steel contribute to the manufacturing of aerospace components?
Special steel plays a vital role in the manufacturing of aerospace components due to its unique properties and characteristics. Its exceptional strength, durability, and resistance to extreme temperatures and corrosion make it an ideal material for various applications in the aerospace industry. One of the main contributions of special steel to aerospace manufacturing is its ability to withstand high stress and pressure. Aerospace components, such as turbine blades, landing gear, and structural supports, are subjected to tremendous forces during flight. Special steel's strength and toughness allow these components to endure these forces without failure, ensuring the safety and reliability of the aircraft. Additionally, special steel's resistance to extreme temperatures is crucial in the aerospace industry. Aircraft engines, for example, operate at extremely high temperatures, and special steel alloys, such as those containing nickel or cobalt, are used to manufacture components like turbine discs and combustion chambers. These alloys can withstand the intense heat and prevent deformation or failure, ensuring optimal engine performance and efficiency. Furthermore, special steel's resistance to corrosion is essential for aerospace applications. Aircraft are constantly exposed to harsh environmental conditions, including moisture, chemicals, and saltwater. Special steel alloys, such as stainless steel, are highly resistant to corrosion, preventing degradation and maintaining the structural integrity of aerospace components over time. This is particularly important for critical parts like fuel tanks, hydraulic systems, and airframe structures. In conclusion, special steel significantly contributes to the manufacturing of aerospace components by providing strength, durability, resistance to extreme temperatures, and corrosion resistance. Its unique properties ensure the safety, reliability, and longevity of aerospace systems, making it an indispensable material in the aerospace industry.
Q: What are the properties of special steel?
Special steel has several unique properties that set it apart from regular steel. First and foremost, it is known for its exceptional strength and durability. Special steel is often alloyed with other elements such as chromium, nickel, or molybdenum, which enhance its hardness and corrosion resistance. Additionally, this type of steel has high temperature resistance, making it suitable for applications that involve extreme heat or pressure. Special steel also exhibits excellent machinability, weldability, and formability, allowing for easy shaping and processing. Overall, its remarkable properties make special steel a preferred choice in industries such as automotive, aerospace, and construction.
Q: Is special steel suitable for manufacturing firearms?
Yes, special steel is highly suitable for manufacturing firearms. Special steel alloys are specifically designed to possess exceptional properties such as high strength, hardness, and resistance to wear and corrosion. These characteristics are crucial for firearms as they need to withstand high pressures, recoil forces, and intense heat generated during firing. Special steel alloys, such as stainless steel or chrome-molybdenum steel, offer excellent tensile strength, allowing firearms to handle the immense pressure generated by the ignition of gunpowder. Moreover, the hardness of special steel ensures that the critical components, such as barrels and receivers, are durable and can withstand repeated use without deforming or cracking. Firearms also require resistance to wear and corrosion, as they are often exposed to harsh environments and various weather conditions. Special steel alloys are engineered to have superior resistance to both wear and corrosion, ensuring that the firearms remain functional and reliable even after prolonged use or exposure to moisture. Furthermore, special steel alloys can be easily machined and formed into complex shapes, allowing manufacturers to create intricate firearm components with precision. This versatility in manufacturing processes enables the production of firearms that meet stringent quality standards and precise specifications. In conclusion, special steel is unquestionably suitable for manufacturing firearms due to its exceptional strength, hardness, resistance to wear and corrosion, and ease of machining. These properties ensure the reliability, durability, and performance of firearms, making special steel an ideal material choice for this purpose.

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

Hot products


Hot Searches

Related keywords