12% Ash Foundry Coke for Steel Plant Made in Shanxi
- Loading Port:
- Tianjin
- Payment Terms:
- TT OR LC
- Min Order Qty:
- 20.1
- Supply Capability:
- 1001 m.t./month
OKorder Service Pledge
OKorder Financial Service
You Might Also Like
Brief Introduction
Foundry Coke is the main fuel of melting iron in the oven. It can melt the materials in the over, make the iron reach great heat, and keep good air permeability by sustain stock column. Thus, the foundry coke should have the characteristics of big block, low reactivity, small porocity, enough anti-crush strengh, low ash and low sulphur.It is becoming more and more important in the industry
The coke handled by our cooperation is made from superior coking coal of Shanxi province. Provided with the advantages of low ash, low sulphur and high carbon. Our coke is well sold in European, American, Japanese and South-east Asian markets. Our owned Coke plant are located in Shanxi Province and supplying of you many kinds of coke.
we supply Foundry Coke long-term, its characteristic is best strength, low sulfur and phosphorus,thermal stability.
Specifications:
ASH % | 8% max | 10% max | 12% max |
V.M.% MAX | 1.5% max | 1.5% max | 2% max |
SULFUR % | 0.65% max | 0.65% max | 0.7% max |
MOISTURE | 5% max | 5% max | 5% max |
Size | 80mm-120mm,80-150,100-150mm, or as request |
Features
1. Our quality is always quite good and stable which is producing and packing according to customers' requirements.
2. Putting Client profile into first, achieved mutual benefit.
3. Good partner on business. It's a good and wise choice for customers' to purchase from us. It's our great honor to cooperate with you.
4. We can supply documents as follows:
- bill of loading,
-Invoice,
-Packing List
-Insurance
-standard inspection pictures of the container as specified by INSPECTORATE
-or more requested by buyer.
Pictures
FAQ
1. What is the packing?
In 25kg bag/ In jumbo bags without pallet/ Two jumbo bags with one pallet/ or as customers’ request
2. What is the production capacity?
10 thousand tons per month
3 What is payment term?
Irrevocable LC at sight/ 20% down payment by T/T and 80% against BL copy byT/T/ or to be discussed
4 What is the service?
We will send sample to the third party(CIQ, CCIC, SGS,BV or to be discussed) for checking, and present the test certificate and loading repot of shipment.
- Q: How does carbon impact the structure and function of ecosystems?
- Carbon, as a fundamental element, plays a crucial role in shaping the structure and function of ecosystems. It serves as a building block of life, found in all living organisms, and continuously cycles between the atmosphere, living organisms, and the Earth's surface. The impact of carbon on ecosystems is diverse, both directly and indirectly. To begin with, carbon is a vital component of organic matter, including plants, animals, and decomposing organic materials. It provides the necessary energy and nutrients for the growth and development of organisms. Through the process of photosynthesis, plants absorb carbon dioxide from the atmosphere and convert it into organic compounds, primarily carbohydrates. These compounds serve as a source of energy and building materials for other organisms, forming the basis of the food chain. As a result, carbon is essential for sustaining the productivity and biodiversity of organisms within ecosystems, as it contributes to their structure and functioning. Additionally, carbon influences the physical structure of ecosystems. In terrestrial ecosystems, carbon is stored in vegetation and soils, creating carbon sinks. Forests, for example, store significant amounts of carbon in their biomass and soils. This plays a crucial role in mitigating climate change by absorbing and sequestering carbon dioxide. However, the loss of these ecosystems, due to deforestation or degradation, can release large amounts of carbon back into the atmosphere. This contributes to the greenhouse effect and climate change. In marine ecosystems, carbon is stored in the form of dissolved inorganic carbon, which can affect ocean acidity. The increasing concentration of carbon dioxide in the atmosphere leads to ocean acidification, impacting the growth and survival of marine organisms, particularly those with calcium carbonate shells or skeletons, such as corals and mollusks. Furthermore, carbon influences the functioning of ecosystems through its role in nutrient cycling. Decomposition, the process of breaking down and recycling organic matter, is largely driven by microorganisms that respire carbon dioxide. This process releases essential nutrients, such as nitrogen, phosphorus, and sulfur, back into the soil, making them available for uptake by plants. Nutrient cycling is crucial for maintaining the productivity and nutrient balance within ecosystems. Changes in the availability of carbon can affect the rates of decomposition and nutrient cycling, which, in turn, impact the structure and functioning of ecosystems. In conclusion, carbon is a fundamental element that significantly impacts the structure and function of ecosystems. Its involvement in energy transfer, organic matter formation, nutrient cycling, and climate regulation makes it essential for the sustainability and functioning of all living organisms within an ecosystem. To ensure the health and resilience of ecosystems in the face of environmental changes, understanding and managing carbon dynamics is crucial.
- Q: How does carbon affect the formation of air pollution in urban areas?
- Carbon, in the form of carbon dioxide (CO2) and carbon monoxide (CO), plays a significant role in the formation of air pollution in urban areas. Urban areas are characterized by high population density and intense human activities, leading to increased emissions of carbon-based pollutants. The combustion of fossil fuels such as coal, oil, and natural gas releases carbon dioxide into the atmosphere. This greenhouse gas is a major contributor to global warming and climate change. In urban areas, the burning of fossil fuels for energy production, transportation, and heating purposes releases large amounts of carbon dioxide. The accumulation of CO2 in the atmosphere traps heat, leading to the urban heat island effect, which exacerbates air pollution problems. Another carbon-based pollutant, carbon monoxide, is primarily emitted from vehicle exhausts and industrial processes. In urban areas with high traffic congestion, carbon monoxide levels tend to be elevated. This gas is particularly harmful as it reduces the blood's ability to carry oxygen, leading to various health issues, particularly for those with pre-existing respiratory conditions. Furthermore, the presence of carbon in urban areas enhances the formation of secondary air pollutants such as ozone and particulate matter. Carbon reacts with other pollutants, such as nitrogen oxides (NOx) and volatile organic compounds (VOCs), in the presence of sunlight to form ground-level ozone. Ozone is a harmful gas that causes respiratory problems and damages vegetation. Additionally, carbon-based pollutants contribute to the formation of fine particulate matter (PM2.5) in urban areas. These particles are small enough to be inhaled deep into the lungs, causing respiratory and cardiovascular problems. Particulate matter is also responsible for reduced visibility, smog formation, and the deposition of harmful substances onto surfaces. To mitigate air pollution in urban areas, reducing carbon emissions is crucial. This can be achieved through various strategies, including promoting the use of clean energy sources, implementing stricter emission standards for vehicles and industries, and encouraging sustainable transportation options such as public transit and cycling. By addressing carbon emissions, we can effectively reduce air pollution and improve the overall air quality in urban areas, leading to healthier and more sustainable cities.
- Q: What are the impacts of carbon emissions on the stability of coastal areas?
- Carbon emissions have significant impacts on the stability of coastal areas. The primary consequence is the acceleration of global warming, leading to rising sea levels and increased frequency and intensity of coastal storms. This combination results in erosion, coastal flooding, and loss of land, endangering ecosystems, infrastructure, and human settlements. Additionally, carbon emissions contribute to ocean acidification, harming marine life and disrupting delicate coastal ecosystems. Therefore, reducing carbon emissions is crucial to mitigate these adverse effects and ensure the long-term stability of coastal areas.
- Q: How does carbon impact the ozone layer?
- Carbon does not directly impact the ozone layer. However, carbon compounds such as chlorofluorocarbons (CFCs), which contain carbon, can have a significant impact on the ozone layer. When released into the atmosphere, CFCs can reach the stratosphere where they are broken down by ultraviolet (UV) radiation and release chlorine atoms. These chlorine atoms then catalytically destroy ozone molecules, leading to the depletion of the ozone layer. The destruction of the ozone layer is a critical environmental issue as it allows more harmful UV radiation from the sun to reach the Earth's surface. Increased UV radiation can have detrimental effects on human health, including skin cancer, cataracts, and weakened immune systems. It can also harm ecosystems by damaging phytoplankton, which are crucial for the marine food chain, and affecting the growth of plants and crops. To combat this problem, the international community has taken steps to reduce the production and use of ozone-depleting substances, including CFCs. The Montreal Protocol, an international environmental agreement, has been successful in phasing out the production of CFCs and other harmful substances. This has contributed to the recovery of the ozone layer, although it is still a long-term process. In conclusion, carbon itself does not directly impact the ozone layer. However, carbon compounds like CFCs, which are released into the atmosphere, can lead to the destruction of the ozone layer. Efforts to reduce the production and use of these ozone-depleting substances have been crucial in protecting the ozone layer and mitigating the harmful effects of increased UV radiation.
- Q: How does carbon affect the formation of avalanches?
- Carbon does not directly affect the formation of avalanches. Avalanches occur primarily due to factors such as snowpack stability, slope angle, and weather conditions. However, carbon emissions and climate change can indirectly impact avalanche formation by affecting snowpack stability. Rising carbon dioxide levels in the atmosphere contribute to global warming, which in turn affects the overall climate. As temperatures increase, it leads to changes in precipitation patterns, snowfall amounts, and snowpack characteristics. Warmer temperatures can cause rain instead of snow, leading to a less stable snowpack. In addition to altered precipitation patterns, climate change can also lead to the melting and refreezing of snow, creating weak layers within the snowpack. These weak layers, combined with subsequent snowfall and wind, can result in unstable snowpacks that are prone to avalanches. Furthermore, carbon emissions contribute to the overall warming of the planet, which can lead to glacier retreat. Glaciers act as natural barriers and stabilizers in mountainous regions, reducing the likelihood of avalanches. As glaciers shrink, they leave behind unstable slopes, increasing the potential for avalanches. It is important to note that while carbon emissions and climate change have an indirect influence on avalanche formation, they are not the sole or primary cause. Local weather conditions, slope angles, and snowpack stability assessments conducted by avalanche experts play a more immediate role in determining the likelihood of an avalanche occurring.
- Q: What are the impacts of carbon emissions on the stability of mountain glaciers?
- Carbon emissions have a significant impact on the stability of mountain glaciers. As carbon dioxide and other greenhouse gases accumulate in the atmosphere, they trap heat and contribute to global warming. This increase in temperature leads to accelerated melting of mountain glaciers, reducing their size and volume. The loss of glaciers not only affects the availability of freshwater resources but also disrupts local ecosystems, alters river flows, and poses a risk of glacial lake outburst floods. Moreover, melting glaciers contribute to rising sea levels, which can have far-reaching consequences for coastal communities and low-lying areas. Therefore, reducing carbon emissions is crucial to mitigate the adverse effects on the stability of mountain glaciers and preserve these vital natural resources.
- Q: How does carbon affect the formation of landslides?
- Carbon does not directly affect the formation of landslides. However, the presence of carbon in the form of organic matter can contribute to the stability of slopes as it plays a role in soil structure and moisture retention.
- Q: What does carbon burning mean?
- Carbon burning means that the source of fire is carbon fire."Carbon coffee" means that the source of roasted coffee is carbon, fire, and sometimes special wood as fuel, because the roasted beans with carbon fire will have wood flavor, not carbon burning flavor.The charcoal pasta has nothing to do with carbon fire, but there is another name - egg Bacon noodles. Spaghetti comes in many ways, mainly because sauces play a decisive role, and carbon burning pasta is named for its sauce color.
- Q: How does carbon affect ocean acidification?
- Carbon dioxide (CO2) is a greenhouse gas that is released into the atmosphere through various human activities, such as burning fossil fuels and deforestation. A significant portion of this CO2 is absorbed by the oceans, leading to a process known as ocean acidification. When CO2 dissolves in seawater, it reacts with water molecules to form carbonic acid. This reaction increases the concentration of hydrogen ions (H+), resulting in a decrease in pH levels, making the seawater more acidic. This decrease in pH is a key characteristic of ocean acidification. As the ocean becomes more acidic, it affects the delicate balance of chemical compounds that many marine organisms rely on for their survival and growth, such as corals, shellfish, and phytoplankton. These organisms use calcium carbonate to build their shells or skeletons, but the increased acidity hinders their ability to do so. Ocean acidification also affects the growth and development of marine plants and animals. For example, the larvae of some marine species are sensitive to changes in pH levels, which can impact their ability to form strong shells or skeletons. Additionally, acidified waters can disrupt the metabolism and reproductive processes of many marine organisms. The consequences of ocean acidification extend beyond individual organisms. Entire ecosystems, such as coral reefs, are threatened by the increasing acidity. Coral reefs provide habitat for countless species and are a crucial part of marine biodiversity. However, the more acidic conditions make it difficult for corals to build and maintain their calcium carbonate structures, leading to coral bleaching and the degradation of reef systems. Furthermore, ocean acidification can have cascading effects on other marine organisms and food webs. For instance, changes in the growth and survival rates of phytoplankton, a primary food source for many marine species, can disrupt the entire food chain, affecting fish populations and ultimately impacting human communities that depend on seafood for sustenance and livelihoods. In conclusion, the increase in carbon dioxide emissions is contributing to ocean acidification, which is altering the chemistry of the oceans and posing significant threats to marine life and ecosystems. Understanding and addressing the causes and impacts of ocean acidification are crucial for the long-term health and sustainability of our oceans.
- Q: I want to make a rectangular round bar for bearing. What carbon fiber and carbon fiber should be used? How should I do it? What kind of machine does it use to dry it?
- Not really. Carbon fiber is only a reinforcing material, similar to glass fiber, without cohesive force.In general, the carbon fiber cloth is to be made of pre impregnated fabric by wet or melting method, and then cut, then laid or rolled to form the embryo according to the shape to be made. Finally, the mold is heated and pressurized and shaped.Plastic molding may be referred to
Send your message to us
12% Ash Foundry Coke for Steel Plant Made in Shanxi
- Loading Port:
- Tianjin
- Payment Terms:
- TT OR LC
- Min Order Qty:
- 20.1
- Supply Capability:
- 1001 m.t./month
OKorder Service Pledge
OKorder Financial Service
Similar products
Hot products
Hot Searches