• 10% Ash Foundry Coke made in Shandong with Sulphur 0.65%max System 1
  • 10% Ash Foundry Coke made in Shandong with Sulphur 0.65%max System 2
10% Ash Foundry Coke made in Shandong with Sulphur 0.65%max

10% Ash Foundry Coke made in Shandong with Sulphur 0.65%max

Ref Price:
get latest price
Loading Port:
Tianjin
Payment Terms:
TT OR LC
Min Order Qty:
20.6
Supply Capability:
1006 m.t./month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Brief Introduction

Foundry Coke is the main fuel of melting iron in the oven. It can melt the materials in the over, make the iron reach great heat, and keep good air permeability by sustain stock column. Thus, the foundry coke should have the characteristics of big block, low reactivity, small porocity, enough anti-crush strengh, low ash and low sulphur.

The coke handled by our cooperation is made from superior coking coal of Shanxi province. Provided with the advantages of low ash, low sulphur and high carbon. Our coke is well sold in European, American, Japanese and South-east Asian markets. Our owned Coke plant are located in Shanxi Province and supplying of you many kinds of coke.

we supply Foundry Coke long-term, its characteristic is best strength, low sulfur and phosphorus,thermal stability.

Specifications:

PARAMETER   UNIT GUARANTEE VALUE

ASH %

8% max

10% max

12% max

V.M.% MAX

1.5% max

1.5% max

2% max

SULFUR %

0.65% max

0.65% max

0.7% max

MOISTURE

5% max

5% max

5% max

Size

80mm-120mm80-150100-150mm, or as request

 

Features

1. Our quality is always quite good and stable which is producing and packing according to customers' requirements.

2. Putting Client profile into first, achieved mutual benefit. It is more and more popular around the world

3. Good partner on business. It's a good and wise choice for customers' to purchase from us. It's our great honor to cooperate with you.

4. We can supply documents as follows:

- bill of loading,

-Invoice,

-Packing List

-Insurance

-standard inspection pictures of the container as specified by INSPECTORATE

-or more requested by buyer.

Pictures

 

10% Ash Foundry Coke made in Shandong with Sulphur 0.65%max

10% Ash Foundry Coke made in Shandong with Sulphur 0.65%max

FAQ

1.    What is the packing?

In 25kg bag/ In jumbo bags without pallet/ Two jumbo bags with one pallet/ or as customers’ request

2. What is the production capacity?

10 thousand tons per month

3 What is payment term?

Irrevocable LC at sight/ 20% down payment by T/T and 80% against BL copy byT/T/ or to be discussed

4 What is the service?

We will send sample to the third party(CIQ, CCIC, SGS,BV or to be discussed) for checking, and present the test certificate and loading repot of shipment.

 

 

Q: How does carbon affect the formation of tornadoes?
Carbon does not have a direct effect on tornado formation. Tornadoes primarily occur when warm, moist air from the surface interacts with cold, dry air from higher levels of the atmosphere, creating strong upward drafts and rotating air columns. Carbon, as an element, does not have a significant role in this process. However, carbon emissions and human-induced climate change can indirectly impact weather patterns, including the frequency and intensity of tornadoes. The burning of fossil fuels, which releases carbon dioxide into the atmosphere, contributes to global warming. This, in turn, leads to changes in temperature and moisture patterns that can influence the conditions necessary for tornado formation. The increased levels of carbon dioxide in the atmosphere can cause the atmosphere to become more unstable, creating conditions favorable for severe thunderstorms that can produce tornadoes. Moreover, the warmer atmosphere with higher moisture content can provide more fuel for these storms, potentially making them stronger. It is important to note that the relationship between carbon emissions and tornadoes is complex and still an ongoing area of research. While there is a possibility of a connection between climate change and tornadoes, it is difficult to attribute individual tornadoes solely to carbon emissions, as tornadoes are influenced by various meteorological factors. In conclusion, carbon does not directly impact tornado formation, but the increased carbon emissions and resulting climate change can indirectly affect the conditions that contribute to tornado formation. Further scientific research is necessary to fully comprehend the relationship between carbon emissions, climate change, and tornado activity.
Q: What are the basic structures of iron carbon alloys?
The symbol is A. The stable austenite has a temperature of 727 DEG C, when the solubility of carbon is 0.77%, the strength, hardness and plasticity of austenite are very good, which is the organization required for high temperature forging or rolling of most steels.Cementite: a metallic compound of iron and carbon with a carbon content of 6.69%. The formula Fe3C is expressed in symbolic Cm. High hardness, poor plasticity, hard and brittle, the number of cementite increases, strength and hardness increase, while plasticity decreases.
Q: What are the consequences of increased carbon emissions on public health systems?
Increased carbon emissions have significant consequences on public health systems. As carbon dioxide levels rise, so does the concentration of air pollutants such as particulate matter, ozone, and nitrogen dioxide. These pollutants have been linked to a range of respiratory and cardiovascular problems, including asthma, lung cancer, and heart disease. Additionally, climate change resulting from increased carbon emissions can contribute to the spread of infectious diseases, heat-related illnesses, and mental health issues. These impacts place a substantial burden on healthcare systems, leading to increased healthcare costs and strained resources.
Q: What are the impacts of carbon emissions on ecosystems?
Carbon emissions have significant impacts on ecosystems, and these effects can be seen across various levels of the food chain. One of the major impacts is the alteration of the climate, as carbon emissions contribute to global warming and climate change. This change in temperature and weather patterns can disrupt ecosystems and lead to the loss of biodiversity. Increased carbon emissions also contribute to ocean acidification, which is the absorption of carbon dioxide by seawater, leading to a decrease in pH levels. This can have detrimental effects on marine life, particularly organisms with calcium carbonate shells such as corals, mollusks, and certain plankton species. As the acidity of the oceans increases, it becomes more challenging for these organisms to form and maintain their protective shells, leading to a decline in their populations. Furthermore, carbon emissions can impact the distribution and behavior of species. As temperatures rise, certain habitats become unsuitable for some species, forcing them to migrate or adapt to new conditions. This can disrupt the delicate balance of ecosystems, as some species may struggle to find adequate resources or may face increased competition for limited resources in their new habitats. Another significant impact of carbon emissions on ecosystems is the increased frequency and intensity of extreme weather events such as hurricanes, droughts, and wildfires. These events can lead to habitat destruction, loss of vegetation, and displacement of species, ultimately affecting the overall health and stability of ecosystems. Overall, carbon emissions have profound and far-reaching impacts on ecosystems. It is essential to reduce these emissions and transition to cleaner energy sources to mitigate these effects and protect the delicate balance of our natural world.
Q: How does carbon impact ocean acidity?
Carbon impacts ocean acidity through a process called ocean acidification. When carbon dioxide (CO2) from the atmosphere is absorbed by seawater, it reacts with water molecules to form carbonic acid. This acidification process lowers the pH levels of the ocean, making it more acidic. The primary source of carbon dioxide in the atmosphere is human activities such as burning fossil fuels, deforestation, and industrial processes. As the concentration of CO2 increases in the atmosphere due to these activities, more and more of it is absorbed by the oceans. The increase in acidity has several detrimental effects on marine life. Many organisms that have calcium carbonate shells, such as coral reefs, shellfish, and some plankton species, are particularly vulnerable to ocean acidification. The increased acidity makes it harder for these organisms to build and maintain their shells, leading to reduced growth rates and increased mortality. Ocean acidification also affects the entire marine food web. It disrupts the balance between predators and prey, as some species of plankton are less able to develop and survive in acidic conditions. This can have cascading effects on the entire ecosystem, impacting fish populations, marine mammals, and ultimately even humans who rely on seafood for sustenance. Additionally, ocean acidification can have significant economic impacts. Commercial fisheries and tourism industries that depend on healthy marine ecosystems can suffer due to the decline in fish populations and the degradation of coral reefs. To mitigate the impacts of carbon on ocean acidity, it is crucial to reduce carbon dioxide emissions and transition to cleaner and more sustainable energy sources. Taking steps to protect and restore marine ecosystems, such as creating marine protected areas and implementing sustainable fishing practices, can also help to mitigate the effects of ocean acidification.
Q: What are the carbon monoxide collection methods?
It can only be collected by drainage. Carbon monoxide is not soluble in water. Because carbon monoxide is poisonous and the density is very close to the air, it can not be collected by exhaust air
Q: Which carbon content is larger, steel or pig iron?
The carbon content of pig iron is large. The carbon content of pig iron is usually 2.5%--4%, and the carbon content of steel is 0.05% - 2%
Q: What are the effects of carbon emissions on the stability of grasslands?
Carbon emissions have a significant impact on the stability of grasslands. One of the main effects is the alteration of the climate, specifically through the greenhouse effect. Carbon dioxide (CO2) is a major greenhouse gas, and the increased concentration of CO2 in the atmosphere leads to global warming. This rise in temperature affects grasslands by altering their natural growth patterns and disrupting the delicate balance of their ecosystems. Higher temperatures caused by carbon emissions can lead to increased evaporation rates, resulting in drier soil conditions. Grasslands are adapted to specific moisture levels, and any changes in these conditions can lead to reduced plant growth and increased susceptibility to drought. As a consequence, grasslands become less stable and more prone to desertification. Moreover, elevated levels of carbon dioxide can affect the nutritional quality of grasses. As CO2 concentrations increase, the relative proportion of essential nutrients in grasses may decrease. This phenomenon, known as nutrient dilution, can impact the health and productivity of herbivores that rely on these grasslands for sustenance. The decline in nutritional value can disrupt the delicate balance of predator-prey relationships and lead to a decline in biodiversity. Additionally, carbon emissions contribute to the acidification of soils. Increased carbon dioxide dissolves in rainwater, forming carbonic acid, which lowers the pH of the soil. Grasses are sensitive to changes in soil pH, and acidification can negatively affect their growth and nutrient uptake. Acidic soil conditions can also lead to the loss of important microorganisms that contribute to a healthy soil ecosystem, further destabilizing grasslands. Lastly, carbon emissions have indirect effects on grasslands through climate change-induced alterations in precipitation patterns. Changes in rainfall patterns can lead to shifts in plant composition and distribution, favoring invasive species or altering the competitive balance between different grass species. This can disrupt the stability and functioning of grassland ecosystems. In conclusion, carbon emissions have numerous detrimental effects on the stability of grasslands. These include changes in climate, increased vulnerability to drought, nutrient dilution, soil acidification, and alterations in precipitation patterns. It is crucial to reduce carbon emissions and mitigate the impacts of climate change to preserve the stability and integrity of grassland ecosystems.
Q: How does carbon impact the migration patterns of animals?
The migration patterns of animals are significantly influenced by carbon emissions and climate change. The increased release of carbon dioxide into the atmosphere causes global warming, which in turn changes the timing and availability of vital resources necessary for migration, such as food and water. One visible effect of carbon emissions on animal migration is the modification of seasonal patterns. As the climate warms, the timing of seasons shifts, impacting the accessibility of food sources that animals depend on during migration. For example, an earlier arrival of spring can lead to a mismatch between the timing of migration and the availability of food, resulting in negative consequences for the survival and reproduction of migratory species. Moreover, climate change, caused by carbon emissions, has an impact on the habitats and ecosystems that animals rely on during migration. Increasing temperatures and changing precipitation patterns can result in the loss or deterioration of crucial habitats, such as wetlands or coastal areas, which serve as stopping points or breeding grounds for migratory animals. This loss of habitat disrupts migration routes and causes changes in the distribution and abundance of species. Additionally, carbon emissions contribute to the acidification of oceans, which has severe consequences for migratory species that depend on marine ecosystems. Acidification affects the availability of food and hampers the reproductive success of marine species, leading to changes in migration patterns and population dynamics. In summary, the impact of carbon emissions on animal migration patterns is intricate and diverse. It disrupts the delicate balance of ecosystems by altering the availability of resources and habitats that animals rely on during migration. Understanding these impacts is crucial for developing effective conservation strategies to mitigate the negative consequences of climate change on migratory species and preserve the integrity of their habitats.
Q: What is carbon black used for?
Carbon black serves a multitude of purposes across a range of industries. Its primary function lies in its use as a pigment and reinforcing filler in the production of rubber goods, including tires, hoses, and belts. The addition of carbon black significantly enhances the strength, durability, and resistance to abrasion of rubber materials. Furthermore, carbon black proves invaluable as a coloring agent in inks, paints, and coatings due to its exceptional light-absorbing properties. It imparts a deep black hue and improves the UV resistance of these products. Additionally, carbon black finds utility in the plastic manufacturing process where it acts as a filler, enhancing the mechanical properties of plastic components while simultaneously reducing costs. Within the energy sector, carbon black finds application as a conductive additive in batteries and fuel cells. Its high electrical conductivity significantly boosts the performance of these energy storage devices. Moreover, carbon black is employed in the production of electrodes for supercapacitors, thanks to its expansive surface area that facilitates efficient energy storage. Beyond this, carbon black also plays a role in the construction industry, serving as a reinforcing agent in concrete and asphalt. By bolstering the strength and durability of these materials, carbon black renders them more resistant to cracking and weathering. In summary, carbon black is a widely utilized substance across a diverse range of industries, including rubber production, plastic manufacturing, ink, paint, and coating formulation, energy storage device creation, and construction. Its properties as a pigment, reinforcing filler, coloring agent, and conductive additive make it an invaluable material in various industrial applications.

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

Hot products


Hot Searches