• 1020 Carbon Seamless Steel Pipe  ASTM A53  CNBM System 1
  • 1020 Carbon Seamless Steel Pipe  ASTM A53  CNBM System 2
  • 1020 Carbon Seamless Steel Pipe  ASTM A53  CNBM System 3
1020 Carbon Seamless Steel Pipe  ASTM A53  CNBM

1020 Carbon Seamless Steel Pipe ASTM A53 CNBM

Ref Price:
get latest price
Loading Port:
Qingdao
Payment Terms:
TT OR LC
Min Order Qty:
10 pc
Supply Capability:
30 pc/month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Quick Details

Thickness:

1 - 40 mm

Section Shape:

Round

Outer Diameter:

21.3 - 609.6 mm



Secondary Or Not:

Non-secondary

Application:

Fluid Pipe

Technique:

Hot Rolled

Certification:

BV

Surface Treatment:

Other

Special Pipe:

Thick Wall Pipe

Alloy Or Not:

Non-alloy

Standard:

API 5L,API

Packaging & Delivery

Packaging Detail:Standard seaworthy export packing with steel strip or with plastic clothe, or as requests from the coustomer.
Delivery Detail:7-25 days after receiveved the deposit

Specifications

Seamless Steel Pipe
Standard:API ASTM DIN
Size:OD:21.3mm-609.6mm
WT:1mm-40mm

Mechanical properties

standard

 grade

Tensile strength(MPA)

yield strength(MPA)

ASTM A106

A

≥330

≥205

B

≥415

≥240

C

≥485

≥275

 

 

Chemical ingredients

standard

grade

Chemical ingredients

C

Si

Mn

P

S

Cr

Mo

Cu

Ni

V

ASTM A106

A

≤0.25

≥0.10

0.27~0.93

≤0.035

≤0.035

≤0.40

≤0.15

≤0.40

≤0.40

≤0.08

B

≤0.30

≥0.10

0.29~1.06

≤0.035

≤0.035

≤0.40

≤0.15

≤0.40

≤0.40

≤0.08

C

≤0.35

≥0.10

0.29~1.06

≤0.35

≤0.35

≤0.40

≤0.15

≤0.40

≤0.40

≤0.08

Company Name Tianjin Xinlianxin
Business TypeManufacturer and Exporter
Productsteel pipe
Main Products and Standards
product nameSpecification Rangesteel GradeExecutive Standard
Structure Pipe20mm-820mm 1/2"-32"10,20,35,45,16Mn,A53ABGB/T8162-1999,ASTM A53-98,ASTM500-98,ASTM 500-98,JISG3441-1998,JISG3444-1994
Pipe for Liquid Transportation20mm-820mm 1/2"-33"10,20,Q345(16Mn),A53AB,A192,SGPGB/T8163-1999,ASTM A53-98,ASTM A192,JISG3452-1997
Boiler Pipe20mm-820mm 1/2"-35"20,20G,A179,A106B,A192,ST37.0,ST44.0,ST35.8,ST45.8,Gr320GB3087-1999,GB5310-1995,ASTM A106,ASTM A179,ASTM A192,DIN-1629-1984,DIN17175,BS3059.1-1987

 

1Productseamless steel pipe
2StandardU.S.A.

ASTM A53/A106/A178/A179/A192/A210/A213/

A333/A335/A283/A135/A214/A315/A500/A501/A519/A161/A334

API 5L/5CT

JapanJIS G3452/G3454/G3456/G3457/G3458/G3460/3461/3462/3464
GermanDIN 1626/17175/1629-4/2448/2391/17200  SEW680
BritainBS 1387/1600/1717/1640/3601/3602/3059/1775
RussiaGOST 8732/8731/3183
ChinaGB/T8162/T8163 GB5310/6579/9948
3

Material

Grade

U.S.A.Gr. B/Gr.A/A179/A192/A-1/T11/T12/T22/P1/FP1/T5/4140/4130
JapanSTPG38,STB30,STS38,STB33,STB42,STS49,
STBA23,STPA25,STPA23,STBA20
GermanST33,ST37,ST35,ST35.8,ST45,ST52,15Mo3,
13CrMo44, 1.0309, 1.0305, 1.0405
BritainLow, Medium, high 
Russia10, 20, 35, 45, 20X
China10#, 20#, 16Mn, 20G, 15MoG, 15CrMo, 30CrMo,
42Crmo, 27SiMn, 20CrMo
4Out Diameter21.3mm-609.6mm
5Wall Thickness2.31mm-40mm
6LengthAs per customers' requirements
7ProtectionPlastic caps/ Wooden case
8SurfaceBlack painting/varnished surface,anti-corrosion oil,
galvanized or as per required by customer


Q: How are steel pipes protected against mechanical damage during transportation?
Steel pipes are protected against mechanical damage during transportation through various measures. One common method is the use of protective coating or wrapping materials. These coatings are usually made of materials like plastic, rubber, or epoxy, which provide a physical barrier to protect the pipes from scratches, dents, or other forms of mechanical damage. Another method is the use of padding or cushioning materials such as foam inserts or rubber gaskets. These materials are placed inside the pipes or around them to absorb any impact or shock during transportation. This helps prevent any potential damage caused by bumps or vibrations. In addition, steel pipes are often secured and immobilized within transportation containers using straps, braces, or other securing devices. These measures ensure that the pipes remain stable and do not move or collide with each other, reducing the risk of mechanical damage. Furthermore, proper handling and loading techniques are crucial in protecting steel pipes during transportation. This includes using appropriate lifting equipment, such as cranes or forklifts, to avoid dropping or mishandling the pipes. Additionally, pipes are often stored or stacked in a way that minimizes the risk of deformation or bending. Overall, a combination of protective coatings, cushioning materials, securement devices, and proper handling techniques are employed to safeguard steel pipes against mechanical damage during transportation. These measures help ensure that the pipes arrive at their destination in optimal condition, ready for use in various applications.
Q: How are steel pipes used in the manufacturing of chemical processing plants?
Steel pipes are commonly used in the manufacturing of chemical processing plants due to their durability, high strength, and resistance to corrosion. These pipes are typically used for the transportation of various chemicals, gases, and liquids within the plant. They help maintain the integrity of the materials being processed and ensure the safe and efficient operation of the plant.
Q: How are steel pipes tested for quality assurance?
Steel pipes are tested for quality assurance through various methods such as hydrostatic testing, non-destructive testing (NDT) techniques like ultrasonic testing, magnetic particle testing, and visual inspection. These tests ensure that the pipes meet the required standards and specifications, checking for flaws, defects, and proper dimensional accuracy.
Q: What are the different methods of cleaning steel pipes?
There are several methods of cleaning steel pipes, including mechanical cleaning, chemical cleaning, and high-pressure water jetting. Mechanical cleaning involves using wire brushes, scrapers, or sandpaper to physically remove debris and rust from the pipe's surface. Chemical cleaning involves using solvents or acids to dissolve contaminants and rust, followed by flushing the pipe with water. High-pressure water jetting uses a stream of water at high pressure to remove dirt, rust, and other deposits from the pipe's interior and exterior surfaces.
Q: Are steel pipes suitable for HVAC systems?
Yes, steel pipes are suitable for HVAC systems. Steel pipes have several advantages that make them a popular choice for HVAC applications. First, steel pipes are strong and durable, allowing them to withstand high pressure and temperature requirements commonly found in HVAC systems. Additionally, steel pipes have excellent corrosion resistance, making them suitable for both indoor and outdoor installations. Steel pipes also have a long lifespan, reducing the need for frequent replacements or repairs. Moreover, steel pipes are readily available in various sizes and thicknesses, allowing for easy customization and installation. Lastly, steel pipes are cost-effective, providing a cost-efficient solution for HVAC systems compared to other materials. Overall, steel pipes are a reliable and suitable choice for HVAC systems due to their strength, durability, corrosion resistance, availability, and cost-effectiveness.
Q: What are the common factors affecting the flow capacity of steel pipes?
The flow capacity of steel pipes can be affected by several common factors. Firstly, the diameter of the pipe plays a crucial role. A larger diameter allows for a greater flow capacity because there is more area for the fluid to pass through. Secondly, the length of the pipe also affects flow capacity. Longer pipes tend to have higher frictional losses, which can decrease the flow capacity. Thirdly, the internal surface roughness of the steel pipe can impact flow capacity. Rough surfaces create more friction, resulting in a lower flow rate. Conversely, smooth pipes allow for smoother flow and higher flow capacity. The properties of the fluid being transported through the steel pipe are another important consideration. Factors such as viscosity, temperature, and density can all influence the flow rate. For example, highly viscous fluids have a lower flow capacity compared to less viscous fluids. Additionally, pressure drop along the length of the pipe is a significant factor. Friction, bends, and restrictions can all cause pressure losses, resulting in a lower flow capacity. The material of the steel pipe and its wall thickness also play a role. Different materials have varying properties that can impact flow rates. Moreover, thicker walls can reduce the internal diameter of the pipe, leading to a lower flow capacity. Lastly, the design and layout of the pipe system, including the presence of fittings, can impact flow capacity. Fittings such as valves, elbows, and tees can cause additional pressure drops and turbulence, reducing the overall flow rate. Considering these factors is essential when designing or evaluating a steel pipe system to ensure optimal flow capacity and efficiency.
Q: Can steel pipes be used for underground heating systems?
Yes, steel pipes can be used for underground heating systems. Steel is a durable and robust material that can withstand the pressure and temperature requirements of heating systems. Additionally, steel pipes are resistant to corrosion, which is crucial for underground applications where exposure to moisture and other elements is common.
Q: Can steel pipes be used for underground sewer lines?
Indeed, underground sewer lines can certainly utilize steel pipes. Given their robustness, resilience, and resistance against corrosion, steel pipes are widely employed in sewer systems. They possess the capacity to withstand the immense burden of soil and external forces, rendering them highly suitable for subterranean purposes. Moreover, steel pipes boast an extended lifespan and excel in efficiently conveying wastewater and sewage over numerous years. However, it remains crucial to guarantee the appropriate coating or lining of these steel pipes to avert corrosion and further elongate their durability.
Q: Can steel pipes be used for underground utility lines?
Yes, steel pipes can be used for underground utility lines. Steel pipes are known for their durability and strength, making them suitable for underground applications. They can withstand heavy loads, pressure, and corrosion, which are essential factors for utility lines that are buried underground. Additionally, steel pipes can be welded or threaded together, allowing for easy installation and maintenance.
Q: How are steel pipes used in the manufacturing of pulp and paper mills?
Steel pipes are commonly used in the manufacturing of pulp and paper mills for various purposes. They are primarily utilized for transporting water, chemicals, and steam throughout the mill's processes. Steel pipes are also employed for structural support, such as in the construction of storage tanks, conveyors, and equipment frames. Additionally, they are used for providing compressed air, ensuring efficient operation of machinery and processes. Overall, steel pipes play a crucial role in facilitating the smooth functioning and efficient production of pulp and paper mills.

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

Hot products


Hot Searches

Related keywords