• Hollow Section Steel Tubes(Hot Rolled/Cold Rolled) System 1
  • Hollow Section Steel Tubes(Hot Rolled/Cold Rolled) System 2
  • Hollow Section Steel Tubes(Hot Rolled/Cold Rolled) System 3
Hollow Section Steel Tubes(Hot Rolled/Cold Rolled)

Hollow Section Steel Tubes(Hot Rolled/Cold Rolled)

Ref Price:
get latest price
Loading Port:
China Main Port
Payment Terms:
TT or L/C
Min Order Qty:
50MT m.t.
Supply Capability:
based on order m.t./month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Hollow Section Steel TubesHot Rolled/Cold Rolled

Application of Hollow Section Steel TubesHot Rolled/Cold Rolled

It is widely used in building, machine, chemical equipment, automobile industrial, container, it is also applied to agriculture and mine machine.

ASTM A500, GB6728

Steel grade of Hollow Section Steel TubesHot Rolled/Cold Rolled

ASTM A500: A, B, C

GB6728Q195Q215Q235Q345

Size of Hollow Section Steel TubesHot Rolled/Cold Rolled

 *Remark: Besides below sizes, we also can arrange production based on requirement of customers

Sizee(mm)

Thickness(mm)

20×10

0.6-1.0

25×12

0.6-1.0

38×19

0.6-1.5

50×25

0.6-1.5

50×30

1.6-3.0

60×40

1.5-3.5

75×50

1.5-4.0

80×40

1.5-4.0

100×50

2.0-6.0

100×60

2.0-6.0

100×75

2.0-6.0

120×60

3.0-6.0

120×80

3.0-6.0

125×50

3.0-6.0

125×75

3.0-6.0

150×50

3.0-6.0

150×75

3.0-6.0

150×100

4.0-12

160×80

4.0-6.0

175×100

4.0-12

200×100

4.0-12

200×150

4.0-12

250×150

5.0-12

300×200

5.0-12

400×200

5.0-12

Chemical Composition(%)

Chemical Requirement

 

Composition %

Grade A

Grade B

Heat

Product

Heat

Product

Element

analysis

analysis

analysis

analysis

Carbon max

0.26

0.3

0.22

0.26

Manganese max

1.4

1.45

Phosphorus, max

0.035

0.045

0.03

0.04

Sulfur max

0.035

0.045

0.02

0.03

Copper, when copper steel is specified, min

0.20

0.18

0.2

0.18

Where an ellipsis (...)appears in this table, there is no requirement

For each reduction of 0.01 percentage point below the specified maximum for carton, and increase of 0.06 percentage point above the specified maximum for manganese is permitted, up to a maximum of 1.50% by heat analysis and 1.6% by product analysis

Mechanical Properties

Tensile Requirement

 

Grade A

Grade B

Tensile strength, min, psi (Mpa)

48000 (400)

70000 (483)

Yield strength, min, psi (Mpa)

36000 (250)

50000 (345)

Elongation in 2 in. (50.8mm), min, %

23

23

Hollow Section Steel Tubes(Hot Rolled/Cold Rolled)

Hollow Section Steel Tubes(Hot Rolled/Cold Rolled)

 

 

 

 

 

Q: What is the role of steel pipes in the telecommunications industry?
Steel pipes play a crucial role in the telecommunications industry as they are used for the installation of underground and overhead telecommunication cables. These pipes provide protection and support to the cables, ensuring their safety and longevity. Additionally, steel pipes are also used in the construction of communication towers and infrastructure, making them an essential component in establishing and maintaining reliable telecommunications networks.
Q: How do you calculate the bending moment of a steel pipe?
The bending moment of a steel pipe can be calculated using the formula M = F * d, where M is the bending moment, F is the applied force, and d is the distance from the neutral axis to the point where the bending moment is being calculated.
Q: How are steel pipes used in the defense sector?
Steel pipes are used in the defense sector for various purposes such as constructing military infrastructure, manufacturing weapons, and creating protective barriers. They are often utilized in the construction of military bases, ammunition storage facilities, and communication systems. Steel pipes are also crucial for manufacturing armored vehicles, artillery, and missile systems. Additionally, they are employed in creating barriers and fortifications to enhance security and defense capabilities.
Q: What are the different end types for steel pipes?
There are several different end types for steel pipes, each serving a specific purpose. Some common end types include: 1. Plain End: This is the most basic type of end for steel pipes, where the pipe has no threading or any other special end treatment. Plain ends are typically used for non-threaded applications or when the pipe is intended to be welded. 2. Threaded End: Threaded ends have male threads on one or both ends of the pipe, allowing for easy connection with other threaded fittings or pipes. This type of end is commonly used in plumbing and gas applications where the pipe needs to be easily assembled or disassembled. 3. Beveled End: Beveled ends are cut at an angle, typically 30 or 45 degrees, to facilitate welding. The bevel creates a smooth transition between the pipe and the weld joint, ensuring a strong and secure connection. Beveled ends are commonly used in construction, oil and gas, and pipeline industries. 4. Coupling End: Coupling ends have female threads on both ends of the pipe, enabling two pipes to be joined together using a coupling or a fitting. This type of end is often used in plumbing systems or for connecting sections of pipes that need to be easily disassembled. 5. Flanged End: Flanged ends have a flared or raised lip on one or both ends of the pipe, allowing for easy attachment to other flanged components, such as valves or pumps. Flanged ends are commonly used in industrial applications where the pipe needs to be securely connected to other equipment. 6. Socket Weld End: Socket weld ends have a socket or recess on one or both ends of the pipe, allowing for easy connection with socket weld fittings. This type of end provides a strong and reliable joint, commonly used in high-pressure applications, such as petrochemical or power plants. These are just a few examples of the different end types for steel pipes. The choice of end type depends on the specific application requirements, such as the need for easy assembly, disassembly, or compatibility with other fittings.
Q: Are steel pipes suitable for offshore drilling platforms?
Steel pipes have been widely used in offshore drilling platforms because of their strength, durability, and resistance to corrosion. These platforms operate in harsh marine environments, where they are exposed to saltwater, extreme pressure, and temperature changes. Steel pipes are capable of enduring these conditions and serving as a reliable and long-lasting solution for transporting fluids, such as oil and gas, from the seabed to the surface. Moreover, the ability to weld steel pipes together facilitates their easy installation and maintenance on offshore drilling platforms. In conclusion, steel pipes have proven to be an appropriate choice for offshore drilling platforms due to their robustness and ability to withstand the challenging conditions of the marine environment.
Q: Can steel pipes be used for underground gas pipelines?
Yes, steel pipes can be used for underground gas pipelines. Steel pipes are commonly used in the construction of gas pipelines due to their strength, durability, and resistance to corrosion. They provide a reliable and safe means of transporting gas underground.
Q: Can steel pipes be used for piling?
Yes, steel pipes can be used for piling. Steel pipes are often used as piles in construction projects due to their strength, durability, and ability to withstand heavy loads. They provide strong support for structures and are commonly used in foundation systems for buildings, bridges, and other infrastructure.
Q: What are the future trends in steel pipe manufacturing?
Some of the future trends in steel pipe manufacturing include the use of advanced automation and robotics, the development of high-strength and lightweight steel materials, the implementation of sustainable and environmentally friendly manufacturing processes, and the integration of digital technologies for improved quality control and efficiency. Additionally, there is a growing focus on developing steel pipes with enhanced corrosion resistance and durability to meet the demands of various industries such as oil and gas, construction, and automotive.
Q: How are steel pipes used in the water treatment industry?
Steel pipes are widely used in the water treatment industry for various applications. They are commonly used as conduits to transport water from different sources to treatment plants and distribution systems. Steel pipes are also employed in the construction of water treatment facilities, including filtration units, pumping stations, and storage tanks. Additionally, steel pipes are utilized in the distribution network to deliver treated water to consumers. The durability and strength of steel make it an ideal choice for handling the high pressure and corrosive conditions often present in water treatment processes.
Q: What is the difference between API 5L and ASTM A106 steel pipes?
Seamless carbon steel pipe is commonly specified under two widely used specifications: API 5L and ASTM A106. These specifications cover similar materials but have different criteria in terms of chemical composition, manufacturing processes, mechanical properties, and testing. API 5L, created by the American Petroleum Institute (API), is designed for line pipe used in oil and gas transportation. It applies to both seamless and welded steel pipes suitable for conveying gas, water, and oil in the natural gas and petroleum industries. API 5L outlines the minimum requirements for manufacturing two product specification levels (PSL 1 and PSL 2) of seamless and welded steel pipes, which have varying chemical composition and mechanical properties. In contrast, ASTM A106, developed by the American Society for Testing and Materials (ASTM), is specifically for seamless carbon steel pipe used in high-temperature service. It covers seamless carbon steel pipe with nominal wall thickness as specified in ANSI B36.10, ranging from NPS 1/8" to NPS 48". ASTM A106 provides guidelines for chemical composition, manufacturing processes, mechanical properties, and testing. A significant distinction between API 5L and ASTM A106 lies in the intended application of the pipe. API 5L is designed for the transmission of liquid and gas, while ASTM A106 is used in high-temperature service. Moreover, the chemical composition and mechanical properties of the steel may differ between the two specifications depending on the grade and type of steel being utilized. To summarize, API 5L and ASTM A106 are extensively used specifications for carbon steel pipe, but they exhibit notable differences in terms of their application, chemical composition, manufacturing processes, mechanical properties, and testing requirements. It is crucial to carefully consider these factors when selecting the appropriate steel pipe for a specific application.
We mainly produces Square and Rectangular Tubes which using the cold rolling technology and other types of tube including Round Steel Pipes, Welded Steel Pipes, Seamless Steel Pipes, Long Products, Flat Steel Products and so on. Our productivity achieves 500, 000 tons each year. Our company is stronger in financial capital and enough power of technical support. The steel tubes made by the company are strictly according to ISO9001:2000 standard quality management system to ensure the high quality of the products.

1. Manufacturer Overview

Location Tianjin,China
Year Established 2000
Annual Output Value Above Thirty Million RMB
Main Markets China; Europe
Company Certifications ISO9001:2000

2. Manufacturer Certificates

a) Certification Name  
Range  
Reference  
Validity Period  

3. Manufacturer Capability

a) Trade Capacity
Nearest Port Tianjin;Qingdao
Export Percentage 41% - 50%
No.of Employees in Trade Department
Language Spoken: English;Chinese
b) Factory Information
Factory Size: 53000square meter
No. of Production Lines
Contract Manufacturing OEM Service Offered;Design Service Offered
Product Price Range Low Average

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

Hot products


Hot Searches

Related keywords