• 1020 Carbon Seamless Steel Pipe  A213 CNBM System 1
  • 1020 Carbon Seamless Steel Pipe  A213 CNBM System 2
1020 Carbon Seamless Steel Pipe  A213 CNBM

1020 Carbon Seamless Steel Pipe A213 CNBM

Ref Price:
get latest price
Loading Port:
Qingdao
Payment Terms:
TT OR LC
Min Order Qty:
10 pc
Supply Capability:
30 pc/month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Quick Details

Thickness:

1 - 40 mm

Section Shape:

Round

Outer Diameter:

21.3 - 609.6 mm



Secondary Or Not:

Non-secondary

Application:

Fluid Pipe

Technique:

Hot Rolled

Certification:

BV

Surface Treatment:

Other

Special Pipe:

Thick Wall Pipe

Alloy Or Not:

Non-alloy

Standard:

API 5L,API

Packaging & Delivery

Packaging Detail:Standard seaworthy export packing with steel strip or with plastic clothe, or as requests from the coustomer.
Delivery Detail:7-25 days after receiveved the deposit

Specifications

Seamless Steel Pipe
Standard:API ASTM DIN
Size:OD:21.3mm-609.6mm
WT:1mm-40mm

Mechanical properties

standard

 grade

Tensile strength(MPA)

yield strength(MPA)

ASTM A106

A

≥330

≥205

B

≥415

≥240

C

≥485

≥275

 

 

Chemical ingredients

standard

grade

Chemical ingredients

C

Si

Mn

P

S

Cr

Mo

Cu

Ni

V

ASTM A106

A

≤0.25

≥0.10

0.27~0.93

≤0.035

≤0.035

≤0.40

≤0.15

≤0.40

≤0.40

≤0.08

B

≤0.30

≥0.10

0.29~1.06

≤0.035

≤0.035

≤0.40

≤0.15

≤0.40

≤0.40

≤0.08

C

≤0.35

≥0.10

0.29~1.06

≤0.35

≤0.35

≤0.40

≤0.15

≤0.40

≤0.40

≤0.08

Company Name Tianjin Xinlianxin
Business TypeManufacturer and Exporter
Productsteel pipe
Main Products and Standards
product nameSpecification Rangesteel GradeExecutive Standard
Structure Pipe20mm-820mm 1/2"-32"10,20,35,45,16Mn,A53ABGB/T8162-1999,ASTM A53-98,ASTM500-98,ASTM 500-98,JISG3441-1998,JISG3444-1994
Pipe for Liquid Transportation20mm-820mm 1/2"-33"10,20,Q345(16Mn),A53AB,A192,SGPGB/T8163-1999,ASTM A53-98,ASTM A192,JISG3452-1997
Boiler Pipe20mm-820mm 1/2"-35"20,20G,A179,A106B,A192,ST37.0,ST44.0,ST35.8,ST45.8,Gr320GB3087-1999,GB5310-1995,ASTM A106,ASTM A179,ASTM A192,DIN-1629-1984,DIN17175,BS3059.1-1987

 

1Productseamless steel pipe
2StandardU.S.A.

ASTM A53/A106/A178/A179/A192/A210/A213/

A333/A335/A283/A135/A214/A315/A500/A501/A519/A161/A334

API 5L/5CT

JapanJIS G3452/G3454/G3456/G3457/G3458/G3460/3461/3462/3464
GermanDIN 1626/17175/1629-4/2448/2391/17200  SEW680
BritainBS 1387/1600/1717/1640/3601/3602/3059/1775
RussiaGOST 8732/8731/3183
ChinaGB/T8162/T8163 GB5310/6579/9948
3

Material

Grade

U.S.A.Gr. B/Gr.A/A179/A192/A-1/T11/T12/T22/P1/FP1/T5/4140/4130
JapanSTPG38,STB30,STS38,STB33,STB42,STS49,
STBA23,STPA25,STPA23,STBA20
GermanST33,ST37,ST35,ST35.8,ST45,ST52,15Mo3,
13CrMo44, 1.0309, 1.0305, 1.0405
BritainLow, Medium, high 
Russia10, 20, 35, 45, 20X
China10#, 20#, 16Mn, 20G, 15MoG, 15CrMo, 30CrMo,
42Crmo, 27SiMn, 20CrMo
4Out Diameter21.3mm-609.6mm
5Wall Thickness2.31mm-40mm
6LengthAs per customers' requirements
7ProtectionPlastic caps/ Wooden case
8SurfaceBlack painting/varnished surface,anti-corrosion oil,
galvanized or as per required by customer


Q:How are steel pipes tested for quality assurance?
Steel pipes are tested for quality assurance through various methods, such as visual inspection, dimensional checks, chemical composition analysis, mechanical property testing, and non-destructive testing techniques like ultrasonic or magnetic particle inspection. These tests ensure that the pipes meet the required specifications, performance standards, and are free from defects or flaws, ensuring their durability and reliability in various applications.
Q:How are steel pipes inspected for quality?
Steel pipes are inspected for quality through a rigorous process that involves various techniques and standards. One common method is visual inspection, where trained professionals examine the pipes for any visible defects such as cracks, dents, or surface irregularities. This visual inspection ensures that the pipes meet the required specifications and are free from any visible flaws. Additionally, non-destructive testing (NDT) methods are employed to evaluate the internal and external quality of the steel pipes. One widely used NDT technique is ultrasonic testing, which involves sending ultrasonic waves through the pipes to detect any internal defects or inconsistencies in the material. This method can identify issues like wall thickness variations, inclusions, or weld defects that may compromise the pipe's integrity. Another popular NDT technique is magnetic particle inspection, which uses magnetic fields and iron particles to identify surface cracks or flaws in the steel pipes. This method is particularly effective for detecting defects in ferromagnetic materials and can be performed on both the outside and inside surfaces of the pipes. Furthermore, hydrostatic testing is often conducted to evaluate the pipes' strength and resistance to pressure. In this process, the pipes are filled with water or another suitable fluid and subjected to a specified pressure to check for leaks or structural weaknesses. This test helps ensure that the pipes are capable of withstanding the intended operational conditions without failure. In addition to these techniques, various quality control measures are implemented throughout the manufacturing process, including material traceability, dimensional checks, and chemical composition analysis. These measures help guarantee that the steel pipes meet the required standards and specifications, ensuring their quality and reliability. Overall, the inspection of steel pipes for quality involves a combination of visual inspection, non-destructive testing methods, and quality control measures. These comprehensive procedures help identify any defects, inconsistencies, or weaknesses, ensuring that the pipes meet the necessary quality standards and are fit for their intended purpose.
Q:Are steel pipes suitable for use in automotive industries?
Yes, steel pipes are suitable for use in automotive industries. They are known for their strength, durability, and resistance to high temperatures and pressure, making them an ideal material for various applications such as exhaust systems, fuel lines, and structural components in automobiles. Steel pipes also offer excellent corrosion resistance, ensuring long-lasting performance in harsh environments.
Q:Difference between seamless steel pipe and welded pipe
Welding pipes can be used in water pipelines, gas pipelines, heating pipes, electrical appliances, pipelines and so on.
Q:Are steel pipes suitable for underground irrigation pumping?
Yes, steel pipes are suitable for underground irrigation pumping. Steel pipes are known for their durability and strength, making them an ideal choice for underground applications. They can withstand high levels of pressure, resist corrosion, and are less likely to be affected by external factors such as soil movement or temperature changes. Additionally, steel pipes have a longer lifespan compared to other materials, reducing the need for frequent replacements. However, it is important to ensure that the steel pipes are properly coated or lined to prevent corrosion and to regularly inspect and maintain them to ensure their effectiveness and longevity.
Q:Can steel pipes be used for water distribution networks?
Yes, steel pipes can be used for water distribution networks. Steel pipes are commonly used for water distribution due to their durability, strength, and resistance to corrosion. They can handle high pressure and are able to withstand extreme weather conditions, making them suitable for long-term use in water distribution networks.
Q:How are steel pipes tested for pressure and leakage?
To ensure the safety and reliability of steel pipes, various methods are employed to test them for pressure and leakage. Hydrostatic testing is a commonly used technique, whereby the pipe is filled with water and subjected to a specific pressure for a set period of time. This examination aims to detect any weaknesses or leaks by observing if there is a drop in pressure or visible water leakage. The test carefully monitors and measures the pressure, and if the pipe successfully withstands the required pressure without any signs of leakage, it is deemed to have passed. In addition to hydrostatic testing, other non-destructive methods can also be utilized. Ultrasonic testing, for instance, employs high-frequency sound waves to identify flaws or defects in the pipe material. Similarly, magnetic particle testing involves the application of a magnetic field to the pipe and inspecting it for any magnetic particles that may indicate cracks or imperfections. Furthermore, visual inspection is a crucial component of the pressure and leakage testing of steel pipes. Trained inspectors thoroughly examine both the exterior and interior surfaces of the pipe to detect any visible signs of damage, such as corrosion, cracks, or faulty welds. This visual assessment aids in identifying potential weak points that may lead to leaks or failures under pressure. In summary, a comprehensive evaluation of steel pipes for pressure and leakage involves a combination of hydrostatic testing, non-destructive methods, and visual inspection. These rigorous procedures guarantee that the pipes meet the required standards and are safe for their intended applications.
Q:How do you solder purple copper plate and steel tube?
The copper plate and the steel tube are brazed by brazing or argon arc welding.
Q:What are the different methods of wrapping steel pipes for corrosion protection?
Corrosion protection for steel pipes can be achieved through various methods, tailored to specific applications and environmental conditions. Some commonly used techniques include: 1. Tape Wrapping: Steel pipes are wrapped with corrosion-resistant tape, like polyethylene or polypropylene tape, to create a barrier between the pipe and corrosive elements. This reduces the risk of direct contact and subsequent corrosion. 2. Inner Wrapping: A protective coating or lining is applied to the inside surface of the steel pipe. This method is commonly employed for pipes transporting fluids or gases, offering an additional layer of protection against internal corrosion. 3. External Coating: A widely utilized technique involves applying a protective coating to the outer surface of the steel pipe. This coating, which can consist of materials like epoxy, polyethylene, or polyurethane, acts as a barrier against corrosive elements, extending the pipe's lifespan. 4. Cathodic Protection: An electrochemical method is utilized to safeguard steel pipes from corrosion. By connecting the steel pipe to a sacrificial anode, such as zinc or magnesium, the anode corrodes instead of the pipe. This diverts corrosive currents away from the pipe, preventing its corrosion. 5. Heat Shrink Sleeve: Heat shrink sleeves are commonly employed for corrosion protection in underground or submerged scenarios. These sleeves, made of heat-activated material, shrink when heated to form a tight seal around the pipe. By preventing direct contact with moisture and corrosive elements, the sleeve effectively acts as a barrier. 6. Fusion Bonded Epoxy (FBE) Coating: FBE coating entails applying a thermosetting powder coating to the steel pipe's surface, which then fuses to create a protective layer. This coating exhibits strong adhesion and corrosion resistance, making it a popular choice for various steel pipe applications. Choosing the appropriate corrosion protection method for steel pipes depends on factors like the environment, specific corrosive elements, intended use, and other requirements. Seeking professional advice and consultation may be necessary to determine the most suitable technique for a particular situation.
Q:How are steel pipes used in the construction of telecommunications towers?
Steel pipes are used in the construction of telecommunications towers as they provide structural support and stability. They are used as the main framework for the tower, forming the vertical columns, horizontal bracing, and diagonal supports. These pipes are capable of withstanding heavy loads, high winds, and other environmental factors, ensuring the tower's durability and longevity. Additionally, steel pipes allow for easy installation and maintenance of antennas, cables, and other telecommunications equipment.

1. Manufacturer Overview

Location
Year Established
Annual Output Value
Main Markets
Company Certifications

2. Manufacturer Certificates

a) Certification Name  
Range  
Reference  
Validity Period  

3. Manufacturer Capability

a)Trade Capacity  
Nearest Port
Export Percentage
No.of Employees in Trade Department
Language Spoken:
b)Factory Information  
Factory Size:
No. of Production Lines
Contract Manufacturing
Product Price Range

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

Hot products


Hot Searches

Related keywords