• Used in EAF as Charge Coke for Foundry Plants with Ash 8%max System 1
  • Used in EAF as Charge Coke for Foundry Plants with Ash 8%max System 2
Used in EAF as Charge Coke for Foundry Plants with Ash 8%max

Used in EAF as Charge Coke for Foundry Plants with Ash 8%max

Ref Price:
get latest price
Loading Port:
Tianjin
Payment Terms:
TT OR LC
Min Order Qty:
21 m.t.
Supply Capability:
6000 m.t./month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Introduction:

Calcined anthracite can be called carbon additive, carbon raiser, recarburizer, injection coke, charging coke, gas calcined anthracite.

Carbon Additive/Calcined Anthracite Coal may substitute massively refinery coke or graphite. Meanwhile its cost is much less than the refinery coke and graphite. Carbon Additive is mainly used in electric steel ovens, water filtering, rust removal in shipbuilding and production of carbon material. 

 It has good characteristics with low ash, low resistivity, low sulphur, high carbon and high density. It is the best material for high quality carbon products. It is used as carbon additive in steel industry or fuel.

 Features:

Best quality Taixi anthracite as raw materials through high temperature calcined at 800-1200   by the DC electric calciner with results in eliminating the moisture and volatile matter from Anthracite efficiently, improving the density and the electric conductivity and strengthening the mechanical strength and anti-oxidation, It has good characteristics with low ash, low resistivity, low carbon and high density. It is the best material for high quality carbon products, it is used as carbon additive in steel industry or fuel.

Specifications:

PARAMETER   UNIT GUARANTEE VALUE

F.C.%

95MIN 

94MIN

93MIN

92MIN

90MIN

85MIN 

84MIN 

ASH %

4MAX

5MAX

6 MAX

6.5MAX

8.5MAX

12MAX

13MAX

V.M.%

1 MAX

1MAX

1.0MAX

1.5MAX 

1.5MAX

3 MAX

3 MAX

SULFUR %

0.3MAX

0.3MAX

0.3MAX

0.35MAX

0.35MAX

0.5MAX

0.5MAX

MOISTURE %

0.5MAX

0.5MAX

0.5MAX

0.5MAX

0.5MAX

1MAX

1MAX

 

 

Pictures

 

Used in EAF as Charge Coke for Foundry Plants with Ash 8%max

Used in EAF as Charge Coke for Foundry Plants with Ash 8%max

Used in EAF as Charge Coke for Foundry Plants with Ash 8%max

Used in EAF as Charge Coke for Foundry Plants with Ash 8%max

 

FAQ:

Packing:

(1). Waterproof jumbo bags: 800kgs~1100kgs/ bag according to different grain sizes;

(2). Waterproof PP woven bags / Paper bags: 5kg / 7.5kg / 12.5kg / 20kg / 25kg / 30kg / 50kg small bags;

(3). Small bags into jumbo bags: waterproof PP woven bags / paper bags in 800kg ~1100kg jumbo bags.

Payment terms
20% down payment and 80% against copy of B/L.

Workable LC at sight,

 

Q: I don't know the battery. Although I know the former is chemical energy, I want to know if the 1 grain size 5 can compare the charge capacity with the 1 grain 5 1ANot much of a fortune, but thank you very much for the enthusiastic friend who gave me the answer. Thank you!
The carbon battery voltage is 1.5V, and the rechargeable battery is only 1.2V. That depends on the capacity of the rechargeable battery. You mean 1000MA?
Q: Appearance, hardness, electrical conductivity, use of carbon 60
For gas storageThe unique molecular structure of C60, C60 can be used as more effective and new hydrogen absorbing material than metal and alloy. There are 30 carbon carbon double bonds, each molecule of C60 so that the C60 molecules in the double bond open can absorb hydrogen. Stable C60 hydride has known C60 C60H24, C60H36 and C60H48. in the control of temperature and pressure conditions, can be simply made by C60 C60 and hydrogen hydrides, it at room temperature is very stable, and in the 80 to 215 DEG C, C60 hydride will release hydrogen, leaving the pure C60, it can be 100% recovery, and was used to prepare C60 hydride. Compared with the hydrogen storage materials of metal or its alloys, C60 hydrogen storage has the advantages of low price, and lighter than C60, metals and alloys, therefore, the same quality of material, the hydrogen storage of C60 metal or its alloy than more.C60 not only can store hydrogen, can also be used to store oxygen. Compared with high-pressure cylinders of oxygen storage, high pressure cylinder pressure is 3.9 * 106Pa, belongs to the high pressure oxygen storage method, and storage of C60 oxygen pressure is only 2.3 * 105 Pa, which belongs to low pressure oxygen storage method. Using C60 under low pressure, large storage has many uses of oxygen in the medical departments, military departments and the business sector will be.
Q: What are the impacts of carbon emissions on coral reefs?
The impacts of carbon emissions on coral reefs are significant and detrimental. Increased levels of carbon dioxide in the atmosphere lead to ocean acidification, which disrupts the delicate balance of the reef ecosystem. Acidic conditions hinder the ability of corals to build their calcium carbonate skeletons, making them more vulnerable to erosion and bleaching. Additionally, rising temperatures caused by carbon emissions contribute to coral bleaching events, where corals expel their symbiotic algae, leading to their eventual death. Overall, carbon emissions pose a major threat to coral reefs, jeopardizing their biodiversity and ecological functions.
Q: Glucose contains resveratrol (C14H12O3) to determine the mass ratio of resveratrol and carbon dioxide of the same quality as carbon dioxide
They are x and y, containing carbon equal, according to the mass of an element = the mass of a compound * the elementMass fractionFor C14H12O3, the carbon mass fraction is C%=12*14/ (12*14+12+16*3) *100%=73.68%For CO2, the mass fraction of carbon is 12/ (12+16*2) =27.27%There is x *73.68%=y*27.27%So there's X: y =57:154
Q: What are fullerenes?
Composed entirely of carbon atoms arranged in a spherical or cage-like structure, fullerenes represent a distinct category of molecules. Their discovery in 1985 sparked significant interest due to their intriguing properties and potential applications across various domains. The most extensively studied and renowned type of fullerene is buckminsterfullerene, also known as C60. This particular fullerene comprises 60 carbon atoms and takes on the form of a hollow sphere resembling a soccer ball. Fullerenes can also consist of varying numbers of carbon atoms, such as C70, C84, or even larger clusters. What sets fullerenes apart is their exceptional stability and distinctive structure. Carbon atoms within a fullerene form covalent bonds, creating a closed network of hexagons and pentagons. This configuration not only gives fullerenes their characteristic shape but also grants them remarkable mechanical, thermal, and chemical stability. Fullerenes possess an array of captivating properties that make them highly appealing for scientific research and technological advancements. They exhibit impressive electrical conductivity and can serve as efficient electron acceptors or donors in organic electronic devices. Additionally, they boast excellent optical properties, such as strong light absorption and emission, which have led to their utilization in solar cells and photovoltaic devices. Furthermore, fullerenes have demonstrated potential in medical and biological applications. Their unique cage-like structure allows for the encapsulation of other molecules within their hollow interior, making them ideal candidates for drug delivery systems. Fullerenes also possess potent antioxidant properties, making them viable contenders for various therapeutic treatments. To summarize, fullerenes represent an enthralling group of carbon-based molecules with distinctive structures and extraordinary properties. Their versatility and potential applications in electronics, energy, medicine, and other fields continue to be explored, rendering them an area of study that is both thrilling and promising within modern science.
Q: How does carbon affect the formation of air pollution in urban areas?
Carbon, in the form of carbon dioxide (CO2) and carbon monoxide (CO), plays a significant role in the formation of air pollution in urban areas. Urban areas are characterized by high population density and intense human activities, leading to increased emissions of carbon-based pollutants. The combustion of fossil fuels such as coal, oil, and natural gas releases carbon dioxide into the atmosphere. This greenhouse gas is a major contributor to global warming and climate change. In urban areas, the burning of fossil fuels for energy production, transportation, and heating purposes releases large amounts of carbon dioxide. The accumulation of CO2 in the atmosphere traps heat, leading to the urban heat island effect, which exacerbates air pollution problems. Another carbon-based pollutant, carbon monoxide, is primarily emitted from vehicle exhausts and industrial processes. In urban areas with high traffic congestion, carbon monoxide levels tend to be elevated. This gas is particularly harmful as it reduces the blood's ability to carry oxygen, leading to various health issues, particularly for those with pre-existing respiratory conditions. Furthermore, the presence of carbon in urban areas enhances the formation of secondary air pollutants such as ozone and particulate matter. Carbon reacts with other pollutants, such as nitrogen oxides (NOx) and volatile organic compounds (VOCs), in the presence of sunlight to form ground-level ozone. Ozone is a harmful gas that causes respiratory problems and damages vegetation. Additionally, carbon-based pollutants contribute to the formation of fine particulate matter (PM2.5) in urban areas. These particles are small enough to be inhaled deep into the lungs, causing respiratory and cardiovascular problems. Particulate matter is also responsible for reduced visibility, smog formation, and the deposition of harmful substances onto surfaces. To mitigate air pollution in urban areas, reducing carbon emissions is crucial. This can be achieved through various strategies, including promoting the use of clean energy sources, implementing stricter emission standards for vehicles and industries, and encouraging sustainable transportation options such as public transit and cycling. By addressing carbon emissions, we can effectively reduce air pollution and improve the overall air quality in urban areas, leading to healthier and more sustainable cities.
Q: How is carbon used in the production of steel?
The production of steel heavily relies on carbon as it directly impacts the characteristics and properties of the end product. Carbon is primarily used as an alloying element in the steelmaking process, where it is carefully added to modify the composition of the steel. The basic oxygen furnace (BOF) process is one of the most commonly employed methods for steel production. In this process, carbon is introduced to the molten iron to achieve the desired grade of steel. The quantity of carbon added determines the steel's mechanical properties, including hardness and strength. Generally, higher levels of carbon result in a harder and stronger steel. Another steelmaking process, known as the electric arc furnace (EAF) process, also utilizes carbon. In this process, recycled steel scrap is melted down using an electric arc to create new steel. Carbon is added during this stage to adjust the carbon content to meet the requirements of the desired steel grade. Moreover, carbon plays a critical role in the heat treatment of steel. Through techniques like carburizing and quenching, carbon is utilized to enhance the surface hardness and wear resistance of steel components. This is particularly vital in industries such as automotive, aerospace, and construction, where the durability and strength of steel are of utmost importance. To summarize, carbon is indispensable in the production of steel as it directly influences the mechanical properties and overall quality of the final product. From regulating the carbon content to controlling heat treatment processes, carbon serves as an essential component in the steelmaking industry.
Q: How does carbon affect the formation of volcanic eruptions?
Carbon can play a significant role in the formation of volcanic eruptions. One way carbon affects volcanic eruptions is through the process of degassing. When magma rises to the surface, it carries dissolved gases, including carbon dioxide, with it. As the magma moves towards the surface and pressure decreases, the dissolved gases start to come out of solution, creating gas bubbles within the magma. These gas bubbles can cause the magma to become more buoyant, making it easier for it to rise and eventually lead to an eruption. Additionally, carbon can also influence the viscosity of magma, which is a measure of its resistance to flow. Magma with higher carbon content tends to have lower viscosity, meaning it is more fluid-like and can flow more easily. This lower viscosity allows the magma to move more rapidly towards the surface, increasing the likelihood of an eruption. Furthermore, carbon can also contribute to the explosiveness of volcanic eruptions. When magma reaches the surface, it can interact with organic matter, such as plant material or fossil fuels, which are rich in carbon. This interaction can lead to the combustion of the organic matter, releasing additional gases, such as methane, which can further increase the pressure within the volcano. This increased pressure can result in more explosive eruptions. Overall, carbon has a significant impact on the formation of volcanic eruptions. It affects the buoyancy of magma, its viscosity, and can contribute to the explosiveness of eruptions. Understanding the role of carbon in volcanic processes is crucial for predicting and mitigating the risks associated with volcanic activity.
Q: What is the atomic weight of carbon?
The atomic weight of carbon is approximately 12 atomic mass units.
Q: What are the properties of carbon-based rubber?
Carbon-based rubber has several properties that make it a versatile and widely used material. Firstly, it has excellent elasticity and flexibility, allowing it to stretch and return to its original shape without deformation. Additionally, it is highly resistant to abrasion, making it durable and long-lasting. Carbon-based rubber is also known for its good electrical conductivity and thermal stability, making it suitable for applications in electrical insulation and high-temperature environments. Finally, it exhibits good chemical resistance, remaining unaffected by many oils, solvents, and chemicals. These properties make carbon-based rubber a preferred choice in various industries, including automotive, manufacturing, and construction.

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

Hot products


Hot Searches