• Stainless Deformed Steel Rebar Hot Rolled of Diameter:3/8"(10MM) System 1
  • Stainless Deformed Steel Rebar Hot Rolled of Diameter:3/8"(10MM) System 2
  • Stainless Deformed Steel Rebar Hot Rolled of Diameter:3/8"(10MM) System 3
  • Stainless Deformed Steel Rebar Hot Rolled of Diameter:3/8"(10MM) System 4
  • Stainless Deformed Steel Rebar Hot Rolled of Diameter:3/8"(10MM) System 5
Stainless Deformed Steel Rebar Hot Rolled of Diameter:3/8"(10MM)

Stainless Deformed Steel Rebar Hot Rolled of Diameter:3/8"(10MM)

Ref Price:
get latest price
Loading Port:
Tianjin
Payment Terms:
TT OR LC
Min Order Qty:
100 m.t.
Supply Capability:
5000 m.t./month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

 Product Description:

OKorder is offering Stainless Deformed Steel Rebar Hot Rolled of Diameter:3/8"(10MM) at great prices with worldwide shipping. Our supplier is a world-class manufacturer of steel, with our products utilized the world over. OKorder annually supplies products to European, North American and Asian markets. We provide quotations within 24 hours of receiving an inquiry and guarantee competitive prices.

 

Product Applications:

Stainless Deformed Steel Rebar Hot Rolled of Diameter:3/8"(10MM) are ideal for structural applications and are widely used in the construction of buildings and bridges, and the manufacturing, petrochemical, and transportation industries.

 

Product Advantages:

OKorder's Stainless Deformed Steel Rebar Hot Rolled of Diameter:3/8"(10MM) are durable, strong, and resist corrosion.

 

Main Product Features:

·         Premium quality

·         Prompt delivery & seaworthy packing (30 days after receiving deposit)

·         Corrosion resistance

·         Can be recycled and reused

·         Mill test certification

·         Professional Service

·         Competitive pricing

 

Specifications of Stainless Deformed Steel Rebar Hot Rolled of Diameter:3/8"(10MM): 

Standard

GB

UK

USA

HRB335  HRB400  HRB500

G460B, B500A, B500B,B500C

GR40, GR60

Diameter

6mm,8mm,10mm,12mm,14mm,16mm,18mm,20mm,

22mm,25mm,28mm,32mm,36mm,40mm,50mm

Length

6M, 9M,12M or as required

Packing

Export standard packing: wrapped by wire rod in bundles

Each bundle weight

2-3MT, or as required

Trade terms

FOB, CFR, CIF

Payment terms

TT payment in advance or Irrevocable LC at sight.

Delivery Detail

within 45 days after received advanced payment or LC.

Brand name

DRAGON

Theoretical weight and section area of each diameter as below for your information:

Diameter(mm)

Section area (mm²)

Mass(kg/m)

Weight of 12m (kg)

Pcs/ton

6

28.27

0.222

2.664

375.38

8

50.27

0.395

4.74

210.97

10

78.54

0.617

7.404

135.06

12

113.1

0.888

10.656

93.84

14

153.9

1.21

14.52

68.87

16

201.1

1.58

18.96

52.74

18

254.5

2.00

24

41.67

20

314.2

2.47

29.64

33.74

22

380.1

2.98

35.76

27.96

25

490.9

3.85

46.2

21.65

28

615.8

4.83

57.96

17.25

32

804.2

6.31

75.72

13.21

36

1018

7.99

98.88

10.43

40

1257

9.87

118.44

8.44

50

1964

15.42

185.04

5.40

 Chemical Composition: (Please kindly find our chemistry of our material based on JIS as below for your information)

JISG3112   SD390

Chemical  Composition

C

Mn

Si

S

P

0.22

1.38

0.4

0.014

0.022

Physical capability

Yield Strength(N/cm²)

Tensile Strength(N/cm²)

Elongation (%)

620

≥400

21

 

The production process of Stainless Deformed Steel Rebar Hot Rolled of Diameter:3/8"(10MM)

 

1-Waling beam furnace 

2-Roughing rolling group 

 3-Intermediate rolling train

4-Finishing rolling group 

5-Water-cooling device 

6-Walking beam cooler

7-Finishing equipment(including the cold scale shear,short feet collection system,

     automatic counting device,bundling machine, collect bench)

 

Usage and Applications of Stainless Deformed Steel Rebar Hot Rolled of Diameter:3/8"(10MM):

Deformed bar is widely used in buildings, bridges, roads and other engineering construction. Big to highways, railways, bridges, culverts, tunnels, public facilities such as flood control, dam, small to housing construction, beam, column, wall and the foundation of the plate, deformed bar is an integral structure material. With the development of world economy  and the vigorous development of infrastructure construction, real estate, the demand for deformed bar will be larger and larger..

 

Packaging & Delivery of Stainless Deformed Steel Rebar Hot Rolled of Diameter:3/8"(10MM):

Packaging Detail: products are packed in bundle and then shipped by container or bulk vessel, deformed bar is usually naked strapping delivery, when storing, please pay attention to moisture proof. The performance of rust will produce adverse effect.

Price: Keep lower operating costs so as to offer competitive price for our clients

 

FAQ:

Q1: Why buy Materials & Equipment from OKorder.com?

A1: All products offered byOKorder.com are carefully selected from China's most reliable manufacturing enterprises. Through its ISO certifications, OKorder.com adheres to the highest standards and a commitment to supply chain safety and customer satisfaction.

Q2: How do we guarantee the quality of our products?

A2: We have established an advanced quality management system which conducts strict quality tests at every step, from raw materials to the final product. At the same time, we provide extensive follow-up service assurances as required.

Q3: How soon can we receive the product after purchase?

A3: Within three days of placing an order, we will begin production. The specific shipping date is dependent upon international and government factors, but is typically 7 to 10 workdays.

 

 

Stainless Deformed Steel Rebar Hot Rolled of Diameter:3/8

 

Stainless Deformed Steel Rebar Hot Rolled of Diameter:3/8

 

 

 

 

Q: Are there any specific safety precautions to be taken while handling steel rebars?
There are several safety measures that need to be taken into account when handling steel rebars. Here are some important factors to consider: 1. Personal Protective Equipment (PPE) is essential. It is crucial to wear the appropriate gear, including safety goggles or glasses, gloves, and steel-toed boots. These items will help safeguard against potential eye injuries, cuts, and crushed toes. 2. Proper lifting techniques must be employed when handling rebars. This involves bending at the knees, maintaining a straight back, and utilizing leg muscles to lift the load. Twisting or jerking movements should be avoided to prevent strains or sprains. 3. Rebars should be stored in an organized and secure manner. They should not be leaned against walls or other structures to avoid falling and causing harm. 4. The sharp edges of rebars should be handled with caution. Careful handling is necessary to prevent cuts or punctures. Wearing protective gloves is recommended to minimize the risk of hand injuries. 5. When transporting rebars, it is crucial to ensure they are secured properly. This prevents movement or falling off the vehicle. Appropriate restraints such as ropes or straps should be used to secure the load safely. 6. It is important to be mindful of any overhead power lines or live electrical sources in the working area. Maintaining a safe distance from these sources prevents accidental contact with the rebars, which can conduct electricity. 7. Communication and awareness among workers are key. Constantly communicating with others in the vicinity ensures that everyone is aware of the presence of rebars. This helps prevent accidental injuries caused by tripping or colliding with the rebars. By adhering to these safety precautions, the risk of accidents or injuries while handling steel rebars can be minimized. It is also important to undergo proper training and comply with any specific safety guidelines provided by your employer or industry regulations.
Q: What is the elongation of steel rebars?
The elongation of steel rebars pertains to how much they can deform or stretch before fracturing or breaking. It measures the ductility or flexibility of the steel rebars. Elongation is typically expressed as a percentage of the rebar's original length. The elongation of steel rebars varies based on the grade or type of steel used and the manufacturing processes involved. In general, steel rebars have a relatively high elongation compared to materials like concrete or timber. This makes them suitable for applications that require flexibility and resistance to deformation, such as reinforced concrete structures. Considering the elongation of steel rebars is crucial in structural design and construction. It affects the rebar's ability to withstand loads, particularly when subjected to tension or bending forces. Higher elongation values indicate a greater capacity for the rebar to stretch and deform without breaking, enhancing the overall performance and safety of the structure. To ensure the proper selection and utilization of steel rebars, it is essential to refer to the relevant standards and specifications provided by regulatory bodies and industry organizations. These guidelines outline specific requirements and recommendations for the elongation of steel rebars, along with other mechanical properties, to guarantee the structural integrity of construction projects.
Q: What is the tensile strength of different grades of steel rebars?
The tensile strength of different grades of steel rebars can vary depending on the specific grade. Generally, steel rebars range in tensile strength from 400 to 600 megapascals (MPa) for lower grade rebars, while higher grade rebars can have tensile strengths ranging from 600 to 900 MPa or even higher.
Q: Are there any alternative materials to steel rebars for reinforcement?
Yes, there are several alternative materials to steel rebars for reinforcement. One such material is fiber-reinforced polymer (FRP) rebars, which are made of high-strength fibers such as carbon, glass, or aramid embedded in a polymer matrix. FRP rebars offer several advantages over steel rebars, including high strength-to-weight ratio, corrosion resistance, and electromagnetic neutrality. They are particularly useful in applications where corrosion is a concern, such as marine environments or structures exposed to chemicals. Another alternative material is basalt rebars, which are made from basalt fiber reinforced with a polymer matrix. Basalt rebars offer similar advantages to FRP rebars, including high strength-to-weight ratio and corrosion resistance. They are also non-conductive and non-magnetic, making them suitable for applications where electromagnetic neutrality is important, such as in MRI facilities or near power lines. In addition to FRP and basalt rebars, other alternative materials for reinforcement include bamboo, timber, and composites made from natural fibers such as hemp or flax. These materials are often used in sustainable construction practices or in regions where they are more readily available than traditional steel rebars. While they may not possess the same strength properties as steel, they can still provide sufficient reinforcement for certain applications and offer other benefits such as low environmental impact or ease of handling and installation. Overall, the availability of alternative materials to steel rebars provides engineers and architects with a range of options to choose from based on the specific requirements of their projects, including factors such as strength, durability, cost, and sustainability.
Q: What is the process of reinforcing concrete columns with steel rebars?
To ensure the structural integrity and strength of concrete columns, the process of reinforcing them with steel rebars involves several steps. Initially, the required load-bearing capacity and other structural considerations are taken into account to determine the design and specifications of the concrete column. This involves deciding on the size, shape, and placement of the rebars within the column. Following this, temporary molds or frameworks in the desired shape and dimensions of the column are constructed as part of the concrete formwork preparation. These molds provide support and containment for the concrete during the pouring and curing stages. Once the formwork is ready, the steel rebars are meticulously positioned and fastened within it. They are typically arranged in a specific pattern to maximize reinforcement and strength, including vertical bars running along the length of the column and horizontal bars that wrap around the vertical ones. To maintain their position and prevent movement during the pouring of the concrete, the rebars are often tied together at intersections using wire or other fasteners. This ensures that the rebars are effectively embedded within the concrete and can properly reinforce the column. Once the rebars are securely in place, the concrete is poured into the formwork. The concrete mixture is carefully applied and consolidated to fully surround and encase the rebars, creating a composite material that is more resistant to cracking and deformation. After the concrete is poured, it is left to cure and harden, typically for a period of several days or weeks. This allows the concrete to gain strength and durability, ensuring effective bonding between the rebars and the concrete and enabling the column to bear the intended loads. Once the concrete has fully cured, the formwork is removed, revealing the reinforced concrete column. The rebars should be completely embedded within the concrete, providing additional strength and support to withstand the applied loads. In summary, reinforcing concrete columns with steel rebars involves careful planning, positioning, and securing of the rebars within the formwork, followed by the pouring, curing, and removal of the formwork. This process guarantees that the resulting reinforced concrete column is structurally sound and capable of withstanding the intended loads and forces.
Q: Are steel rebars subject to any international standards or regulations?
Yes, steel rebars are subject to international standards and regulations. The most widely recognized international standard for steel rebars is the ISO 6935-2 standard, which sets requirements for the chemical composition, mechanical properties, and dimensions of rebars. Additionally, various countries have their own national standards and regulations that ensure the quality and safety of steel rebars used in construction projects.
Q: How are steel rebars handled and installed in congested reinforcement areas?
In congested reinforcement areas, steel rebars are typically handled and installed using specialized tools and techniques. Construction workers often use lifting devices or cranes to move the rebars into position, taking care to avoid damaging surrounding structures or other reinforcement elements. In tight spaces, rebars may be manually maneuvered and adjusted using hooks or other tools, ensuring proper alignment and spacing as per design specifications. Additionally, the rebars may be tied together with wire or welded to form a stable reinforcement structure. The process requires skilled workers who are experienced in working with rebars in congested areas to ensure accurate and safe installation.
Q: What are the safety measures to consider while handling steel rebars?
When handling steel rebars, there are several safety measures that should be considered to minimize the risk of accidents or injuries. These measures include: 1. Personal Protective Equipment (PPE): Always wear the necessary PPE, which may include safety glasses, steel-toe boots, gloves, and a hard hat. This will protect you from potential hazards such as falling rebars, sharp edges, or flying debris. 2. Proper Lifting Techniques: When lifting rebars, use proper lifting techniques to avoid straining your back or causing injury. Bend your knees, keep your back straight, and lift with your leg muscles, rather than your back. 3. Secure Storage: Store steel rebars in a secure and organized manner to prevent them from falling or rolling onto someone. Stack them in a stable manner and use support structures if necessary. 4. Communication and Signage: Ensure clear communication between workers involved in rebars handling. Use hand signals or verbal cues to avoid accidents. Additionally, place safety signs or warning labels in the area to indicate potential hazards or restricted access. 5. Proper Tools and Equipment: Use appropriate tools and equipment specifically designed for handling steel rebars. This may include lifting clamps, rebars benders, or cutting tools. Inspect and maintain these tools regularly to ensure their proper functioning. 6. Inspection and Removal of Defective Rebars: Inspect steel rebars for any defects, such as cracks, rust, or damage, before using them. Defective rebars should be removed and replaced with new ones to ensure structural integrity. 7. Secure Work Area: Maintain a clean and clutter-free work area to prevent tripping hazards and provide enough space for maneuvering. Keep the work area well-lit and free from obstacles or other potential hazards. 8. Training and Supervision: Provide proper training to workers involved in handling rebars, ensuring they are aware of the safety protocols and best practices. Regularly supervise their work to identify any unsafe practices and provide guidance or corrective actions. By following these safety measures, the risk of accidents and injuries while handling steel rebars can be significantly reduced, resulting in a safer work environment.
Q: Can steel rebars be used in sustainable construction practices?
Yes, steel rebars can be used in sustainable construction practices. They are commonly used in reinforced concrete structures, which have a long lifespan and can be recycled at the end of their life. Additionally, steel rebars can contribute to the overall strength and durability of a building, reducing maintenance and replacement needs. Furthermore, using steel rebars can enhance the energy efficiency of a structure by providing thermal mass, which helps in reducing heating and cooling requirements.
Q: What are the guidelines for ensuring proper bond between steel rebars and concrete?
The guidelines for ensuring proper bond between steel rebars and concrete include ensuring clean and rust-free rebars, providing adequate concrete cover, using proper bar spacing and diameter, using mechanical bond enhancers if necessary, and properly compacting the concrete around the rebars. Additionally, proper curing and hydration of the concrete are essential for achieving a strong bond between the rebars and concrete.

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

Hot products


Hot Searches

Related keywords