Stainless deformed steel bar for construction
- Loading Port:
- Tianjin
- Payment Terms:
- TT OR LC
- Min Order Qty:
- 100000 m.t.
- Supply Capability:
- 10000 m.t./month
OKorder Service Pledge
OKorder Financial Service
You Might Also Like
Specification
OKorder is offering stainless deformed steel bar deformed steel bar at great prices with worldwide shipping. Our supplier is a world-class manufacturer of steel, with our products utilized the world over. OKorder annually supplies products to European, North American and Asian markets. We provide quotations within 24 hours of receiving an inquiry and guarantee competitive prices.
Product Applications:
G460B deformed steel bar deformed steel bar are ideal for structural applications and are widely used in the construction of buildings and bridges, and the manufacturing, petrochemical, and transportation industries.
Product Advantages:
OKorder's deformed steel bar are durable, strong, and resist corrosion.
Main Product Features:
· Premium quality
· Prompt delivery & seaworthy packing (30 days after receiving deposit)
· Corrosion resistance
· Can be recycled and reused
· Mill test certification
· Professional Service
· Competitive pricing
Product Specifications:
Manufacture: Hot rolled
Grade: HRB335
Size: 6mm-25mm
Certificates: ISO, SGS, BV, CIQ
Length: 6m – 12m, as per customer request
Packaging: Export packing, nude packing, bundled
Grade | Technical data of the original chemical composition (%) | |||||||
C | Mn | Si | S | P | B | |||
HRB335 | ≤0.25 | ≤1.60 | ≤0.80 | ≤0.045 | ≤0.045 | >0.0008 | ||
Physics capability | ||||||||
Yield Strength(N/cm2) | Tensile Strength(N/cm2) | Elongation (%) | ||||||
≥335 | ≥490 | ≥16 |
Usage and Applications of HRB400 Deformed Steel Bar:
Deformed bar is widely used in buildings, bridges, roads and other engineering construction. Big to highways, railways, bridges, culverts, tunnels, public facilities such as flood control, dam, small to housing construction, beam, column, wall and the foundation of the plate, deformed bar is an integral structure material. With the development of world economy and the vigorous development of infrastructure construction, real estate, the demand for deformed bar will be larger and larger..
Packaging & Delivery of HRB400 Deformed Steel Bar:
Packaging Detail: products are packed in bundle and then shipped by container or bulk vessel, deformed bar is usually naked strapping delivery, when storing, please pay attention to moisture proof. The performance of rust will produce adverse effect.
Each bundle weight: 2-3MT, or as required
Payment term: TT or L/C
Delivery Detail: within 45 days after received advanced payment or LC.
Label: to be specified by customer, generally, each bundle has 1-2 labels
Trade terms: FOB, CFR, CIF
FAQ:
Q1: Why buy Materials & Equipment from OKorder.com?
A1: All products offered byOKorder.com are carefully selected from China's most reliable manufacturing enterprises. Through its ISO certifications, OKorder.com adheres to the highest standards and a commitment to supply chain safety and customer satisfaction.
Q2: How do we guarantee the quality of our products?
A2: We have established an advanced quality management system which conducts strict quality tests at every step, from raw materials to the final product. At the same time, we provide extensive follow-up service assurances as required.
- Q: What is the impact of steel rebars on the overall durability of a structure?
- Steel rebars have a significant impact on the overall durability of a structure. These reinforced steel bars enhance the structural integrity by providing tensile strength and resisting the forces that can cause cracking or failure. By reinforcing concrete, steel rebars increase the structure's ability to withstand external pressures, such as heavy loads, seismic activity, or weather conditions. This reinforcement ensures long-term durability, stability, and structural soundness, making steel rebars crucial for constructing resilient and long-lasting buildings and infrastructure.
- Q: Are there any limitations to using steel rebars in construction?
- Yes, there are some limitations to using steel rebars in construction. One limitation is that steel rebars can corrode when exposed to moisture and oxygen, especially in environments with high humidity or near coastal areas where saltwater can accelerate corrosion. This can weaken the structure over time and may require regular maintenance and inspections to prevent structural failure. Another limitation is that steel rebars have a high thermal conductivity, which means they can conduct heat and cold more easily than other materials. This can result in increased energy transfer and potentially affect the overall energy efficiency of the building. Steel rebars are also heavy and require specialized equipment for handling and installation. This can increase construction costs and may limit their use in certain applications where weight is a concern, such as in high-rise buildings or in areas with weak soil conditions. In addition, steel rebars are susceptible to electromagnetic interference, which can be a concern in buildings with sensitive electronic equipment or in areas with high levels of electromagnetic radiation. Lastly, steel rebars are not environmentally friendly as their production contributes to carbon dioxide emissions. They also have a high embodied energy, meaning a significant amount of energy is required to manufacture and transport them. Overall, while steel rebars are widely used in construction due to their strength and durability, it is important to consider these limitations and assess whether alternative materials or construction methods would be more suitable for specific projects.
- Q: What is the lifespan of steel rebars in a corrosive environment?
- The lifespan of steel rebars in a corrosive environment can vary depending on several factors such as the severity of the corrosive environment, the quality of the steel used, and the presence of protective measures like coatings or cathodic protection. However, on average, steel rebars can last anywhere from 20 to 50 years in a corrosive environment before significant corrosion damage occurs.
- Q: Can steel rebars be used in structures with high resistance to vibration?
- Structures with high resistance to vibration can indeed make use of steel rebars. These rebars are frequently employed as reinforcements in concrete structures to enhance their durability and strength. The inclusion of steel rebars bolsters the structural integrity of buildings and infrastructure, rendering them more impervious to a range of forces, including vibrations. Steel rebars possess exceptional tensile strength and stiffness, enabling them to evenly distribute and absorb applied loads throughout the structure. This characteristic helps to minimize concentrated stress points that may trigger vibrations or structural failure. Moreover, steel rebars are effective in controlling crack widths and preventing crack propagation, which further fortifies the structure against vibrations. Furthermore, steel rebars can be tailored to meet specific requirements based on projected vibration levels. By utilizing rebars with suitable diameters, spacing, and anchorage details, structures can be engineered to withstand vibrations caused by various external factors, such as earthquakes, wind loads, or nearby machinery. It is of utmost importance to ensure proper design and detailing of steel rebars in structures with high resistance to vibration. The layout of reinforcements must be meticulously planned to account for anticipated forces and vibrations. Additionally, the rebars should be adequately anchored and connected to other structural components to maintain their efficacy in combatting vibrations. All in all, when designed and implemented correctly, steel rebars serve as a dependable and widely-used reinforcement material that significantly enhances the resistance of structures to vibrations.
- Q: How do steel rebars affect the flexural strength of reinforced concrete elements?
- The flexural strength of reinforced concrete elements is greatly influenced by steel rebars. Rebars improve the ability of concrete elements to withstand bending or flexural forces. To provide tensile strength, high-strength steel rebars are embedded within the concrete. Concrete is strong when compressed but weak when subjected to tension. By incorporating rebars, the resulting composite material benefits from the concrete's high compressive strength and the steel's excellent tensile strength. When a flexural load is applied to a reinforced concrete element, such as a beam or slab, the rebars distribute the load across the section. This effectively resists the concrete's tendency to crack and fail under tension. Acting as reinforcements, the rebars resist the tensile forces that occur due to bending, thus increasing the structure's flexural strength. The flexural strength of reinforced concrete elements is greatly influenced by the size, spacing, and arrangement of the rebars. Proper design and placement of rebars ensure optimal resistance to anticipated bending forces. Factors such as the element's span, expected loads, and desired strength level must be carefully considered. In addition, the bond between the rebars and the concrete is crucial for transferring bending stresses. Sufficient concrete cover over the rebars protects them from corrosion, ensuring their durability and the integrity of the structure. Corrosion weakens the bond between steel rebars and the surrounding concrete, compromising the flexural strength of the reinforced element. In conclusion, steel rebars greatly enhance the flexural strength of reinforced concrete elements by providing necessary tensile strength to resist bending forces. Proper design, placement, and bonding of rebars are vital to ensuring the durability and structural integrity of reinforced concrete structures.
- Q: What are the environmental impacts of using steel rebars in construction?
- The utilization of steel rebars in construction yields various environmental effects, both advantageous and disadvantageous. One of the positive consequences is that steel possesses exceptional durability and longevity, resulting in structures constructed with steel rebars having an extended lifespan. Consequently, the frequency of repairs or replacements is reduced, thereby diminishing the accumulation of waste over time. Nevertheless, the manufacture of steel rebars entails considerable adverse environmental outcomes. The production of steel involves the extraction and processing of iron ore, which necessitates extensive mining operations. These mining activities contribute to deforestation, the destruction of habitats, and soil erosion. Furthermore, the extraction and processing of iron ore consume substantial amounts of energy, thereby emitting greenhouse gases and polluting the air. Additionally, the manufacturing process of steel rebars entails the utilization of various chemicals, such as limestone and coke, which, if not adequately managed, can detrimentally affect local ecosystems and water sources. The discharge of pollutants and waste products during steel production can also contribute to water and soil pollution. Furthermore, the transportation of steel rebars from production facilities to construction sites entails environmental implications. Long-distance transportation can result in heightened carbon emissions and energy consumption, particularly when importing rebars from distant locations. To mitigate these environmental impacts, sustainable practices can be implemented in the production and utilization of steel rebars. The recycling of steel is an essential measure in reducing the demand for new production and minimizing the environmental footprint. By employing recycled steel, the energy consumption and greenhouse gas emissions associated with production can be significantly diminished. Moreover, the implementation of efficient transportation methods, such as utilizing rail or waterways instead of trucks, can diminish the carbon footprint of steel rebars. In conclusion, while steel rebars offer durability and longevity in construction, their production and utilization bear significant environmental implications. The adoption of sustainable practices and an emphasis on recycling can help mitigate the negative impacts and render their use more environmentally friendly.
- Q: Can steel rebars be used in marine construction?
- Yes, steel rebars can be used in marine construction. They are commonly used as reinforcement in concrete structures to provide strength and durability. However, it is important to use corrosion-resistant steel rebars, such as stainless steel or epoxy-coated rebars, to prevent corrosion due to exposure to saltwater.
- Q: How do steel rebars improve the load-carrying capacity of concrete?
- Steel rebars improve the load-carrying capacity of concrete by providing additional tensile strength. When concrete is subjected to heavy loads or forces, it tends to crack under tension. The inclusion of steel rebars within the concrete helps to counteract this weakness by absorbing the tensile forces and distributing them throughout the structure. This reinforcement enhances the overall durability and structural integrity of the concrete, allowing it to bear heavier loads without failing.
- Q: What are the different methods of protecting steel rebars against corrosion?
- There are multiple methods available for safeguarding steel rebars from corrosion, which can be broadly categorized into passive and active protection. Passive protection methods involve using barrier coatings or inhibitors to prevent corrosive agents from reaching the surface of the steel rebars. One commonly used technique is applying epoxy coatings, which create a physical barrier between the rebar and its surrounding environment. These coatings can be administered through spraying, brushing, or immersion, and offer excellent corrosion protection. Another passive protection method is utilizing zinc-based coatings like galvanization or zinc-rich paints. These coatings provide sacrificial protection, where the zinc layer corrodes first, thereby shielding the steel rebar from corrosive elements. Galvanization, a widely adopted technique, involves immersing the rebar in molten zinc to form a protective layer. In addition to barrier coatings, inhibitors can also be employed to protect steel rebars. Inhibitors work by reducing the corrosive activity of the surrounding environment. Common inhibitors include calcium nitrite, which forms a protective layer on the rebar's surface, and organic compounds such as amines and phosphates, which passivate the steel and decrease corrosion rates. Active protection methods involve using impressed current cathodic protection (ICCP) or galvanic anodes. ICCP entails applying a direct electrical current to the steel rebar, counteracting the corrosive forces. This technique necessitates the installation of anodes and a power supply system. On the other hand, galvanic anodes are sacrificial metals like aluminum or magnesium that are connected to the steel rebar. The anode corrodes instead of the rebar, offering protection. It is important to consider various factors, including the environment, exposure conditions, and project requirements, when selecting a protection method. Consulting corrosion experts or engineers is often recommended to determine the most suitable method for safeguarding steel rebars from corrosion in a specific situation.
- Q: How do steel rebars affect the cost of a construction project?
- Steel rebars can significantly affect the cost of a construction project because they are a crucial component in reinforced concrete structures. The cost of steel rebars depends on their quantity, grade, and size, and it can greatly impact the overall project budget. Additionally, the transportation and installation costs associated with steel rebars should also be taken into account. Therefore, careful planning and consideration of the type and amount of steel rebars required are essential to manage and optimize the project's cost.
Send your message to us
Stainless deformed steel bar for construction
- Loading Port:
- Tianjin
- Payment Terms:
- TT OR LC
- Min Order Qty:
- 100000 m.t.
- Supply Capability:
- 10000 m.t./month
OKorder Service Pledge
OKorder Financial Service
Similar products
Hot products
Hot Searches
Related keywords