Special Steel Reinforcing Steel Bars HRB355 Rebars
- Loading Port:
- China main port
- Payment Terms:
- TT OR LC
- Min Order Qty:
- 30 m.t.
- Supply Capability:
- 10000 m.t./month
OKorder Service Pledge
OKorder Financial Service
You Might Also Like
Specification
Product Information
Chemical composition
Grade | Technical data of the original chemical composition (%) | |||||
C | Mn | Si | S | P | B | |
HRB335 | ≤0.25 | ≤1.60 | ≤0.80 | ≤0.045 | ≤0.045 | >0.0008 |
Physics capability | ||||||
Yield Strength (N/cm2) | Tensile Strength (N/cm2) | Elongation (%)
| ||||
≥335 | ≥490 | ≥16 |
3.Theorectical weight
Diameter (MM) | Cross Sectional Area (MM2) | Theorectical Weight (KG/M) | Weight of 12M Bar (KG) | A Ton Contains 12M Bars (PCS) |
6 | 28.27 | 0.222 | 2.664 | 375.38 |
8 | 50.27 | 0.395 | 4.74 | 210.97 |
10 | 78.54 | 0.617 | 7.404 | 135.06 |
12 | 113.1 | 0.888 | 10.656 | 93.84 |
14 | 153.9 | 1.21 | 14.52 | 68.87 |
16 | 201.1 | 1.58 | 18.96 | 52.74 |
18 | 254.5 | 2 | 24 | 41.67 |
20 | 314.2 | 2.47 | 29.64 | 33.74 |
22 | 380.1 | 2.98 | 35.76 | 27.96 |
25 | 490.9 | 3.85 | 46.2 | 21.65 |
28 | 615.8 | 4.83 | 57.96 | 17.25 |
32 | 804.2 | 6.31 | 75.72 | 13.21 |
36 | 1018 | 7.99 | 98.88 | 10.43 |
40 | 1257 | 9.87 | 118.44 | 8.44 |
Product Show
Workshop Show
Shipping
1. FedEx/DHL/UPS/TNT for samples, Door-to-Door;
2. By Air or by Sea for batch goods, for FCL; Airport/ Port receiving;
3. Customers specifying freight forwarders or negotiable shipping methods!
Delivery Time: 3-7 days for samples; 5-25 days for batch goods.
Payment Terms
1.Payment: T/T, L/C, Western Union, MoneyGram,PayPal; 30% deposits; 70% balance before delivery.
2.MOQ: 1pcs
3.Warranty : 3 years
4.Package Informations: 1) EXPORT, In 20 feet (GW 25 ton) or 40 feet Container (GW 25 ton)
2)as customer's requirement
Why choose us?
(1) The leading exporter in China special steel industry.
(2) Large stocks for various sizes, fast delivery date.
(3) Good business relationship with China famous factories.
(4) More than 7 years steel exporting experience.
(5) Good after-sales service guarantee.
- Q: How does special steel contribute to the telecommunications machinery industry?
- The telecommunications machinery industry heavily relies on special steel for the production of durable and high-quality equipment. This steel is crucial in providing the necessary materials for antennas, satellite dishes, and transmission towers. These machinery are constantly exposed to different environmental conditions and need to endure extreme weather, corrosion, and mechanical stress. Special steel, renowned for its exceptional strength, toughness, and corrosion resistance, ensures the longevity and reliability of telecommunications equipment. For example, antennas and satellite dishes made from special steel can withstand harsh weather conditions and strong winds without compromising signal quality or structural integrity. Moreover, transmission towers, which play a vital role in efficient signal transmission over long distances, are manufactured using special steel. These towers need to support heavy equipment, endure dynamic loads, and resist corrosion to maintain uninterrupted communication. The high tensile strength and corrosion resistance of special steel guarantee the stability and longevity of transmission towers, ultimately contributing to the overall reliability of the telecommunications network. Additionally, special steel is utilized in the production of cables and connectors used in telecommunications systems. These components require high conductivity, low resistance, and resistance to wear and tear. By incorporating special steel, manufacturers of telecommunications machinery can ensure efficient signal transmission and reduce signal loss, leading to improved communication quality. In conclusion, special steel is indispensable in the telecommunications machinery industry as it provides superior strength, durability, and corrosion resistance. By incorporating special steel into the production of antennas, satellite dishes, transmission towers, cables, and connectors, the industry can deliver reliable and high-quality telecommunications equipment to meet the increasing demands of the modern world.
- Q: What are the main characteristics of electrical steel forgings?
- Electrical steel forgings possess several key characteristics that make them highly suitable for electrical applications. Firstly, electrical steel forgings exhibit low core loss, which refers to the amount of energy lost as heat during the magnetic cycle. This low core loss property makes electrical steel forgings ideal for transformers, motors, and generators, as it helps to enhance the overall efficiency and performance of these devices. Secondly, electrical steel forgings have high magnetic permeability, which means they can easily conduct magnetic flux. This characteristic allows for effective magnetic induction and helps to maximize the magnetic field strength in electrical components. As a result, electrical steel forgings enable efficient energy conversion and transmission. Additionally, electrical steel forgings exhibit low coercivity, meaning they require minimal magnetic field strength to magnetize and demagnetize. This property allows for faster and more precise magnetic switching in electrical devices, leading to improved performance and reduced energy losses. Furthermore, electrical steel forgings possess high electrical resistivity, which helps to minimize the flow of electrical current and reduce energy losses due to eddy currents. This characteristic is crucial in applications where electrical steel forgings are subjected to rapidly changing magnetic fields, such as power transformers. Lastly, electrical steel forgings are often treated with surface insulation coatings or coatings with high electrical resistivity to further enhance their electrical performance and prevent any short circuits or electrical leakage. In summary, the main characteristics of electrical steel forgings include low core loss, high magnetic permeability, low coercivity, high electrical resistivity, and the ability to be coated for insulation. These properties make electrical steel forgings essential for various electrical applications, ensuring efficient energy conversion, reduced losses, and reliable performance.
- Q: What are the properties of cobalt-based alloys?
- Cobalt-based alloys are known for their high strength, corrosion resistance, and excellent thermal stability. They exhibit remarkable wear resistance, making them suitable for applications in extreme environments such as aerospace, oil and gas, and medical implants. These alloys also possess magnetic properties, making them useful in electromagnetic devices. Additionally, cobalt-based alloys can be easily fabricated and offer good machinability, further adding to their versatility and appeal in various industries.
- Q: Can special steel be used in the nuclear industry?
- Yes, special steel can be used in the nuclear industry. Special steel is often chosen for its high strength, corrosion resistance, and ability to withstand extreme temperatures and radiation. It is commonly used in the construction of nuclear reactors, containment vessels, and fuel storage systems. The specific requirements and standards for special steel used in the nuclear industry are carefully regulated to ensure safety and reliability.
- Q: What is the role of heat treatment in special steel?
- The role of heat treatment in special steel is to enhance its mechanical properties and improve its performance by altering its microstructure through controlled heating and cooling processes. This helps to achieve desired properties such as increased hardness, strength, toughness, and ductility, as well as improved wear resistance and corrosion resistance. Heat treatment also allows for the refinement of grain structure, elimination of internal stresses, and modification of the steel's crystalline structure, which ultimately improves the overall quality and usability of special steel in various applications.
- Q: How does special steel contribute to the dimensional stability of products?
- Special steel contributes to the dimensional stability of products through its unique properties and characteristics. One of the key factors is its high level of hardness, which allows it to resist deformation or changes in shape and size under varying temperature and load conditions. This hardness ensures that the product maintains its intended dimensions and shape, even when subjected to external forces or thermal fluctuations. Moreover, special steel often possesses excellent thermal conductivity, enabling it to efficiently distribute and dissipate heat. This property helps prevent localized heating or cooling, which can cause dimensional changes in materials. By maintaining consistent temperatures across the product, special steel minimizes the risk of warping, expansion, or contraction, thereby ensuring dimensional stability. Another aspect that contributes to dimensional stability is the low coefficient of thermal expansion of special steel. This coefficient measures the amount of expansion or contraction a material undergoes in response to temperature changes. Special steel's low coefficient means it experiences minimal dimensional changes when exposed to temperature variations. This characteristic is particularly crucial in applications where precise tolerances and tight dimensional control are required, such as in aerospace or automotive industries. Furthermore, special steel often possesses enhanced corrosion resistance, which helps prevent rusting or degradation of the material over time. Corrosion can lead to changes in the shape and dimensions of products, compromising their dimensional stability. By using special steel, manufacturers can ensure that their products maintain their original dimensions and structural integrity, even in harsh or corrosive environments. Overall, the unique properties of special steel, such as high hardness, excellent thermal conductivity, low coefficient of thermal expansion, and corrosion resistance, all contribute to the dimensional stability of products. By incorporating special steel into the manufacturing process, companies can produce high-quality products that maintain their precise dimensions and shape, ensuring reliability and longevity for end-users.
- Q: What are the different shot blasting techniques used for special steel?
- There are several shot blasting techniques used for special steel, including wheel blasting, air blasting, and centrifugal blasting.
- Q: How does special steel compare to other materials such as aluminum or titanium?
- Special steel boasts a unique set of advantages and characteristics when compared to materials like aluminum or titanium. Firstly, its exceptional strength and durability set it apart. With a higher tensile strength than aluminum and titanium, it is ideal for applications that require withstanding heavy loads or high-stress environments. This strength also ensures a longer lifespan by resisting wear and tear. Furthermore, special steel maintains its mechanical properties even at extreme temperatures. Unlike aluminum and titanium, which experience a significant decrease in strength at elevated temperatures, special steel retains its structural integrity, making it suitable for applications involving high temperatures or thermal cycling. In terms of cost-effectiveness, special steel often proves to be more affordable than titanium, especially in large-scale production. While aluminum is generally cheaper than special steel, it may lack the same level of strength or resistance to corrosion, limiting its applicability in certain industries. Additionally, special steel exhibits excellent machinability and can be easily formed into different shapes and sizes, allowing for greater design flexibility. This quality makes it suitable for various industries such as automotive, aerospace, construction, and manufacturing, where complex components or structures are required. Lastly, special steel showcases superior corrosion resistance compared to aluminum and titanium. It can be treated or coated to provide additional protection against rust and other forms of degradation, further extending its lifespan. In summary, special steel surpasses aluminum and titanium in terms of strength, durability, temperature resistance, and corrosion resistance. Its cost-effectiveness, machinability, and versatility make it a preferred material in various industries, where high-performance and reliability are crucial factors.
- Q: How is special steel used in the production of cutting inserts?
- Special steel is used in the production of cutting inserts due to its unique properties that make it ideal for this application. Cutting inserts are used in machining operations to remove material from a workpiece and shape it into the desired form. These inserts need to be able to withstand high temperatures, resist wear and abrasion, and maintain their sharp cutting edges for prolonged periods. Special steel, also known as tool steel, is specifically designed to meet these requirements. It is an alloy that contains various elements such as chromium, tungsten, vanadium, and molybdenum, which enhance its mechanical properties. Special steel has excellent hardness, toughness, and high-temperature resistance, making it suitable for cutting inserts. The special steel used in the production of cutting inserts undergoes a series of processes, including heat treatment, to further enhance its properties. Heat treatment involves heating the steel to a specific temperature and then rapidly cooling it, which adds strength and hardness to the material. This process helps to ensure that the cutting inserts can withstand the extreme forces and temperatures encountered during machining operations. Additionally, special steel can be coated with various materials, such as titanium nitride or diamond-like carbon, to further improve its performance. These coatings enhance the hardness, reduce friction, and improve the overall wear resistance of the cutting inserts, increasing their lifespan and efficiency. In summary, special steel is used in the production of cutting inserts due to its exceptional hardness, toughness, high-temperature resistance, and wear resistance. These properties allow the cutting inserts to withstand the demanding conditions of machining operations and maintain their sharp cutting edges for prolonged periods, resulting in efficient and precise material removal.
- Q: What are the main properties of special steel?
- The main properties of special steel include high strength, excellent corrosion resistance, superior heat resistance, good toughness, and exceptional wear resistance. Additionally, special steel often exhibits high ductility, machinability, and weldability, making it suitable for various applications in industries such as automotive, aerospace, and construction.
Send your message to us
Special Steel Reinforcing Steel Bars HRB355 Rebars
- Loading Port:
- China main port
- Payment Terms:
- TT OR LC
- Min Order Qty:
- 30 m.t.
- Supply Capability:
- 10000 m.t./month
OKorder Service Pledge
OKorder Financial Service
Similar products
Hot products
Hot Searches
Related keywords