• Solar Inverter 1kw Off Grid 1kVA-5kVA Built-in 50APwm 60Amppt Charge Controller Parallel Function System 1
  • Solar Inverter 1kw Off Grid 1kVA-5kVA Built-in 50APwm 60Amppt Charge Controller Parallel Function System 2
Solar Inverter 1kw Off Grid 1kVA-5kVA Built-in 50APwm 60Amppt Charge Controller Parallel Function

Solar Inverter 1kw Off Grid 1kVA-5kVA Built-in 50APwm 60Amppt Charge Controller Parallel Function

Ref Price:
get latest price
Loading Port:
China main port
Payment Terms:
TT or LC
Min Order Qty:
1500 watt
Supply Capability:
3000000 watt/month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

1. Structure of Solar Inverter Off Grid 1kva -5kva Built in 50APWM 60AMPPT Charge Controller Parallel Function Description

A solar inverter, or PV inverter, or Solar converter, converts the variable direct current (DC) output of a photovoltaic (PV) solar panel into a

 utility frequency alternating current (AC) that can be fed into a commercial electrical grid or used by a local, off-grid electrical network. It is

 a critical BOS–component in a photovoltaic system, allowing the use of ordinary AC-powered equipment. Solar inverters have special

functions adapted for use with photovoltaic arrays, including maximum power point tracking and anti-islanding protection.

 

 

2. Main Features of Solar Inverter Off Grid 1kva -5kva Built in 50APWM 60AMPPT Charge Controller Parallel Function

•  Pure sine wave inverter

Selectable input voltage range for home appliances and personal computers

Selectable charging current based on applications

Configurable AC/Solar input priority via LCD setting

Compatible to mains voltage or generator power

Parallel operation with up to 4 units only available for PV200 4KVA/5KVA

Auto restart while AC is recovering

Overload and short circuit protection

Smart battery charger design for optimized battery performance

Cold start function

 

 

3. Solar Inverter Solar Inverter Off Grid 1kva -5kva Built in 50APWM 60AMPPT Charge Controller Parallel Function Images

 

 

4. Solar Inverter Off Grid 1kva -5kva Built in 50APWM 60AMPPT Charge Controller Parallel Function Specification

RATED POWER

1000VA / 800W

2000VA/

3000VA / 2400W

4000VA / 3200W

5000VA / 4000W

1600W

INPUT

Voltage

230 VAC 

Selectable Voltage Range

170-280 VAC (For Personal Computers) ; 90-280 VAC (For Home Appliances)

Frequency Range

50 Hz/60 Hz (Auto sensing)

OUTPUT

AC Voltage Regulation 

230 VAC ± 5%

(Batt. Mode)

Surge Power

2000VA

4000VA

6000VA

8000VA

10000VA

Efficiency (Peak)

90%

93%

Transfer Time

10 ms (For Personal Computers) ; 20 ms (For Home Appliances)

Waveform

Pure sine wave

BATTERY

Battery Voltage

12 VDC

24 VDC

48 VDC

Floating Charge Voltage

13.5 VDC

27 VDC

54 VDC

Overcharge Protection

15 VDC

30 VDC

60 VDC

Maximum Charge Current

10 A or 20 A

20 A or 30 A

60 A

SOLAR CHARGER (OPTION)

Charging Current

50 A

Maximum PV Array Open Circuit Voltage

30 VDC

60 VDC

105 VDC

Standby power Consumption

1 W

2 W

2 W

PHYSICAL

Dimension, D x W x H (mm)

95 x 240 x 316

100 x 272 x 355

125 x 297.5 x 468

Net Weight (kgs)

5

6.4

6.9

9.8

9.8

OPERATING ENVIRONMENT

Humidity

5% to 95% Relative Humidity(Non-condensing)

Operating Temperature

0°C - 55°C

Storage Temperature

-15°C - 60°C

 

 

5. FAQ of Solar Inverter Off Grid 1kva -5kva Built in 50APWM 60AMPPT Charge Controller Parallel Function

Q1:Can we visit your factory?

A1:Sure,welcome at any time,seeing is believing.

 

 

Q2:Which payment terms can you accept?

A2:T/T,L/C,Moneygram,Paypal are available for us.

 

Q:How does a solar inverter handle voltage dips or surges in the grid?
A solar inverter handles voltage dips or surges in the grid by constantly monitoring the grid voltage. In case of a dip or surge, it quickly adjusts its own output voltage to match the grid voltage, thereby stabilizing the grid. This is achieved through various control mechanisms, such as voltage feedback loops and power electronics, which ensure that the solar inverter remains synchronized with the grid and provides a consistent and reliable power supply.
Q:How does the input voltage range affect the performance of a solar inverter?
The input voltage range of a solar inverter directly impacts its performance. A wider input voltage range allows the inverter to adapt to various solar panel configurations and environmental conditions, maximizing the system's overall efficiency. A limited input voltage range may result in reduced efficiency and output power, as the inverter may not be able to effectively convert the varying voltages produced by the solar panels. Additionally, a wider input voltage range provides flexibility in system design and allows for the incorporation of additional solar panels in the future without the need for significant modifications.
Q:What is the role of a synchronization circuit in a solar inverter?
The role of a synchronization circuit in a solar inverter is to ensure that the inverter is synchronized with the utility grid. This circuit monitors the frequency and phase of the grid and adjusts the inverter's output accordingly to match the grid's characteristics. By synchronizing the inverter with the grid, it allows for safe and efficient power transfer, prevents disruptions to the grid, and enables the inverter to operate in parallel with other power sources.
Q:Can a solar inverter be connected to a computer or smartphone?
Yes, a solar inverter can be connected to a computer or smartphone. Many modern solar inverters come with built-in Wi-Fi or Bluetooth connectivity, allowing users to monitor and control their solar energy system through dedicated apps or web portals on their computers or smartphones. This enables real-time monitoring of energy production, system performance, and even allows for remote troubleshooting and adjustments.
Q:How do you troubleshoot common issues with a solar inverter?
To troubleshoot common issues with a solar inverter, start by checking the power source and ensuring it is connected properly. Next, inspect the wiring connections to ensure they are secure and not damaged. Additionally, check the fuse or circuit breaker to see if it has tripped or blown. If the inverter displays an error code, refer to the manufacturer's manual for troubleshooting steps. If none of these steps resolve the issue, it is advisable to contact a professional technician or the manufacturer for further assistance.
Q:How does a solar inverter affect the overall system reliability?
A solar inverter plays a crucial role in the overall system reliability of a solar power system. It converts the direct current (DC) generated by solar panels into alternating current (AC) that can be used to power homes or be fed back into the grid. By ensuring efficient and reliable conversion, a solar inverter helps optimize the system's performance and stability. It also incorporates various protection features like over-voltage and over-current protection to safeguard the system from potential damage. Therefore, a high-quality and well-maintained solar inverter positively impacts the overall reliability of the solar power system.
Q:How does a solar inverter handle islanding detection?
A solar inverter handles islanding detection by constantly monitoring the electrical grid. If it detects that the grid has been disconnected, it initiates a process to disconnect itself from the grid to prevent an islanding event. This is typically done through the use of advanced algorithms and protective mechanisms to ensure the safety and stability of the electrical system.
Q:How do you choose the right output voltage for a solar inverter?
When choosing the right output voltage for a solar inverter, it is crucial to consider the specific requirements of the electrical appliances or systems that will be powered by the inverter. The output voltage must match the voltage requirements of the devices to ensure compatibility and efficient operation. Additionally, the local electrical grid standards and regulations should be taken into account, as certain regions may have specific voltage requirements. It is advisable to consult with a professional or an electrician who can assess the specific needs and provide guidance in selecting the appropriate output voltage for the solar inverter.
Q:What is the role of a transformer in a solar inverter?
The role of a transformer in a solar inverter is to convert the direct current (DC) electricity generated by the solar panels into alternating current (AC) electricity suitable for use in homes and businesses. The transformer helps to step up or step down the voltage levels, ensuring efficient and safe transmission of electricity from the solar panels to the electrical grid or connected loads.
Q:Generally a large grid-connected photovoltaic power plant will have several inverters
, This method is simple to design, easy maintenance, but also for the power grid harmonics smaller, good power quality!

1. Manufacturer Overview

Location
Year Established
Annual Output Value
Main Markets
Company Certifications

2. Manufacturer Certificates

a) Certification Name  
Range  
Reference  
Validity Period  

3. Manufacturer Capability

a)Trade Capacity  
Nearest Port
Export Percentage
No.of Employees in Trade Department
Language Spoken:
b)Factory Information  
Factory Size:
No. of Production Lines
Contract Manufacturing
Product Price Range

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

Hot products


Hot Searches

Related keywords