• Solar Inverter for Home - sun-3.6/5/6/7.6/8k-sg05lp1-eu 3.6-8kW Single Phase | 2 MPPT | Hybrid Inverter | Low Voltage Battery System 1
  • Solar Inverter for Home - sun-3.6/5/6/7.6/8k-sg05lp1-eu 3.6-8kW Single Phase | 2 MPPT | Hybrid Inverter | Low Voltage Battery System 2
  • Solar Inverter for Home - sun-3.6/5/6/7.6/8k-sg05lp1-eu 3.6-8kW Single Phase | 2 MPPT | Hybrid Inverter | Low Voltage Battery System 3
  • Solar Inverter for Home - sun-3.6/5/6/7.6/8k-sg05lp1-eu 3.6-8kW Single Phase | 2 MPPT | Hybrid Inverter | Low Voltage Battery System 4
Solar Inverter for Home - sun-3.6/5/6/7.6/8k-sg05lp1-eu 3.6-8kW Single Phase | 2 MPPT | Hybrid Inverter | Low Voltage Battery

Solar Inverter for Home - sun-3.6/5/6/7.6/8k-sg05lp1-eu 3.6-8kW Single Phase | 2 MPPT | Hybrid Inverter | Low Voltage Battery

Ref Price:
get latest price
Loading Port:
Ningbo
Payment Terms:
TT OR LC
Min Order Qty:
100 pc
Supply Capability:
5000 pc/month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Specification

Output Power:
3.6/5/6/7.6/8KW
Inveter Efficiency:
96.5%
Output Voltage(V):
220
Input Voltage(V):
370
Output Current(A):
16.4-36.4
Output Frequency:
50/60Hz


Technical Data
ModelSUN-3.6K
-SG05LP1-EU
SUN-5K
-SG05LP1-EU
SUN-6K
-SG05LP1-EU
SUN-7.6K
-SG05LP1-EU
SUN-8K
-SG05LP1-EU
Battery Input Data
Battery TypeLead-acid or Li-lon
Battery Voltage Range (V)40~60
Max. Charging Current (A)90120135190190
Max. Discharging Current (A)90120135190190
External Temperature SensorYes
Charging Curve3 Stages / Equalization
Charging Strategy for Li-Ion BatterySelf-adaption to BMS
PV String Input Data
Max. DC Input Power (W)468065007800988010400
Rated PV Input Voltage (V)370 (125~500)
Start-up Voltage (V)125
MPPT Voltage Range (V)150-425
Full Load DC Voltage Range (V)300-425200-425
PV Input Current (A)13+1326+26
Max. PV ISC (A)17+1734+34
No.of MPP Trackers2
No.of Strings per MPP Tracker12
AC Output Data
Rated AC Output and UPS Power (W)36005000600076008000
Max. AC Output Power (W)36905500660083608800
AC Output Rated Current (A)16.4/15.722.7/21.727.3/26.134.5/3336.4/34.8
Max. AC Current (A)18/17.225/23.930/28.738/36.340/38.3
Max. Continuous AC Passthrough (A)354050
Peak Power (off grid)2 time of rated power, 10 S
Power Factor0.8 leading to 0.8 lagging
Output Frequency and Voltage50/60Hz; L/N/PE  220/230Vac (single phase)
Grid TypeSingle Phase
DC injection current (mA)THD<3% (Linear load<1.5%)
Efficiency
Max. Efficiency0.976
Euro Efficiency0.965
MPPT Efficiency0.999
Protection
IntegratedPV Input Lightning Protection, Anti-islanding Protection, PV String Input Reverse Polarity Protection, Insulation Resistor Detection, Residual Current Monitoring Unit, Output Over Current Protection, Output Shorted Protection, Surge protection
Output Over Voltage ProtectionDC Type II/AC Type III
Certifications and Standards
Grid RegulationCEI 0-21, VDE-AR-N 4105, NRS 097, IEC 62116, IEC 61727, G99, G98,
VDE 0126-1-1, RD 1699, C10-11
Safety EMC / StandardIEC/EN 61000-6-1/2/3/4, IEC/EN 62109-1, IEC/EN 62109-2
General Data
Operating Temperature Range (℃) -40~60℃, >45℃ derating 
                                     Cooling
Natural cooling
Noise (dB)<30 dB
 Communication with BMS
RS485; CAN
Size (mm)330W x 580H x232D
 Protection DegreeIP65
 Installation Style

Wall-mounted
Warranty 5 years
Weight (kg)24

  
Colorful touch LCD, IP65 protection degree

 6 time periods for battery charging/discharging

  Max. charging/discharging current of 120A

 Max.16pcs parallel

  DC couple and AC couple to retrofit existing solar system

 Support storing energy from diesel generator

 48V low voltage battery, safe and reliable

 Unique Smart Load application and Grid peak shaving function 4ms fast transfer from on-grid to off-grid mode, ensuing the traditional fixed frequency air conditioner works well

SUN 3.6/8K-SG05hybrid inverter, is suitable for residential and light commercial use, maximizing self-consumption rate of solar energy and increasing your energy impendence.   During the day, the PV system generates electricity which will be provided to the loads initially. Then, the excess energy will charge the battery via SUN 3.6/8K-SG05. Finally, the stored energy can be released when the loads require it. The battery can also be charged by the diesel generator to ensure uninterrupted supply in the event of grid blackout.

It equipped with RS485/CAN port for battery communication

 


Q: Can a solar inverter be used with solar trackers?
Yes, a solar inverter can be used with solar trackers. Solar trackers are used to maximize the efficiency of solar panels by orienting them towards the sun. Solar inverters are responsible for converting the DC power generated by solar panels into usable AC power. Both components work together to optimize solar energy production.
Q: Can a solar inverter be used with different grid voltages?
No, a solar inverter cannot be used with different grid voltages. Solar inverters are designed to convert the DC power generated by solar panels into AC power that matches the specific voltage and frequency of the grid. Using a solar inverter with different grid voltages can cause damage to the inverter and can also be a safety hazard.
Q: What are the communication protocols used in solar inverters?
The communication protocols commonly used in solar inverters are Modbus, SunSpec, and DNP3. These protocols enable the inverters to communicate with other devices and systems, such as monitoring software, energy management systems, and smart grids, to exchange data and control commands.
Q: How is the output voltage of a solar inverter regulated?
The output voltage of a solar inverter is regulated through the use of advanced control mechanisms and power electronics. These components monitor the input voltage from the solar panels and adjust the inverter's internal circuitry accordingly to ensure a stable and consistent output voltage. This regulation process involves techniques such as pulse width modulation (PWM) and maximum power point tracking (MPPT) to optimize the power conversion and maintain the desired voltage level.
Q: What are the potential risks of over-discharging a battery connected to a solar inverter?
The potential risks of over-discharging a battery connected to a solar inverter include reduced battery lifespan, damage to the battery cells, decreased battery capacity and performance, and potential safety hazards such as overheating or even battery failure.
Q: Can a solar inverter be used in systems with different module voltages?
Yes, a solar inverter can be used in systems with different module voltages by adjusting its settings or using additional components such as DC optimizers or power optimizers. These components help in matching the voltage of the solar modules to the input voltage range of the inverter, allowing for efficient power conversion.
Q: How does a solar inverter handle shade on solar panels?
A solar inverter handles shade on solar panels by utilizing a technology called maximum power point tracking (MPPT). MPPT allows the inverter to constantly monitor the output of each individual solar panel and adjust the voltage and current to maximize the power production. When shade is detected on a solar panel, the inverter automatically reduces the power output of the affected panel, ensuring that the shaded area does not significantly impact the overall performance of the system.
Q: What is the role of a solar inverter in maintaining system stability?
The role of a solar inverter in maintaining system stability is to convert the direct current (DC) produced by solar panels into alternating current (AC) that can be used by household appliances and fed back into the electrical grid. By regulating the voltage and frequency of the AC output, the inverter ensures that the solar system operates within the acceptable range, preventing overloading or damaging the connected devices. Additionally, solar inverters also help to synchronize the solar system with the grid, allowing for smooth integration and optimal energy flow. Overall, the solar inverter plays a crucial role in maintaining the stability and efficiency of the solar power system.
Q: How does a solar inverter handle excess power production?
A solar inverter handles excess power production by converting the surplus energy generated by the solar panels into usable AC power. This excess power is either fed back into the grid or stored in batteries for later use, depending on the type of solar system setup.
Q: How does a solar inverter affect the value of a property?
A solar inverter can positively affect the value of a property by increasing its desirability and potential energy savings. It allows for the conversion of solar energy into usable electricity, reducing reliance on the grid and potentially lowering energy bills. Additionally, having a solar inverter in place can demonstrate a commitment to sustainability and environmental consciousness, which may be appealing to potential buyers and increase the property's overall value.

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

Hot products


Hot Searches

Related keywords