• Small Solar Inverter - Grid-Tied Solar PV Inverter 15000TL Intelligent Grid Management System 1
  • Small Solar Inverter - Grid-Tied Solar PV Inverter 15000TL Intelligent Grid Management System 2
  • Small Solar Inverter - Grid-Tied Solar PV Inverter 15000TL Intelligent Grid Management System 3
  • Small Solar Inverter - Grid-Tied Solar PV Inverter 15000TL Intelligent Grid Management System 4
  • Small Solar Inverter - Grid-Tied Solar PV Inverter 15000TL Intelligent Grid Management System 5
Small Solar Inverter - Grid-Tied Solar PV Inverter 15000TL Intelligent Grid Management

Small Solar Inverter - Grid-Tied Solar PV Inverter 15000TL Intelligent Grid Management

Ref Price:
get latest price
Loading Port:
Shanghai
Payment Terms:
TT or LC
Min Order Qty:
10 unit
Supply Capability:
10000 unit/month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing


High-yield

·Max98.2% efficiency

·Realtime precise MPPT algorithm for max harvest

·Wideinput voltage operation range from 250V to 960V

Allin one. Flexible and economical system solution

·DCswitch(option)

·DCsurge protection device(option)

·ACsurge protection device(option)

·Built-inPV Combiner(option)

·Powermanagement unit

·Optimumselection for big PV plants, commercial buildings...

Lowmaintenance cost

·Detachablecover for easy installation

·Rust-freealuminum covers

·Flexiblemonitoring solution

·Multifunction relay can be configured to show various inverter information

Intelligentgrid management

·LVRTsupport

·Reactivepower adjustable

·Selfpower reducer whenover frequency

·Remoteactive/reactive power limit control


Technical  Data

SOFAR 10000TL

SOFAR 15000TL

SOFAR 17000TL

SOFAR 20000TL

Input  (DC)

Max.  Input Power

10400W

15600W

17700W

20800W

Max. DC  power for single MPPT

6750(450V-850V)

10500(500V-850V)

10500(500V-850V)

12000(500V-850V)

Number of  independent MPPT

2

Number  of DC inputs

2 for each  MPPT

3 for  each MPPT

Max.  Input Voltage

1000V

Start-up  input voltage

350V(+/-1V)

Rated  input voltage

600V

Operating  input voltage range

250V-960V

MPPT  voltage range

350V-850V

370V-850V

420V-850V

430V-850V

Max.  Input current per MPPT

15A/15A

21A/21A

21A/21A

24A/24A

Input  short circuit current per MPPT

20A

27A

27A

30A

Output(AC)

Rated  power(@230V,50Hz)

10000VA

15000VA

17000VA

20000VA

Max. AC  power

10000VA

15000VA

17000VA

20000VA

Nominal  AC voltage

3/N/PE,  220/380

3/N/PE,  230/400

3/N/03,  240/415

Nominal  AC voltage range

184V-276V

Grid  frequency range

50Hz,  +/-5Hz

Active  power adjustable range

0~100%

Max.  Output Current

15A

22A

25A

29A

THDi

<3%

Power  Factor

1(Adjustable  +/-0.8)

Performance

Max  efficiency

98.2%

Weighted  eff.(EU/CEC)

97.6%/97.8%

97.9%/98%

97.9%/98%

98%/98.1%

Self-consumption  at night

<1W

Feed-in  start power

45W

MPPT  efficiency

>99.5%

Protection

DC  reverse polarity protection

Yes

DC  switch

Optional

Protection  class/overvoltage category

I/III

Input/output  SPD(II)

Optional

Safety  Protection

Anti-islanding,  RCMU, Ground fault monitoring

Certification

CE, CGC,  AS4777, AS3100, VDE 4105, C10-C11, G59(more available on request)

Communication

Power  management unit

According  to certification and request

Standard  Communication Mode

RS485,  Wifi(optional), Multi-function relay

Operation  Data Storage

25 years

General  data

Ambient  temperature range

-25℃ ~ +60℃

Topology

Transformerless

Degree  of protection

IP65

Allowable  relative humidity range

0 ~ 95%  no condensing

Max.  Operating Altitude

2000m

Noise

<45dB

Weight

45kg

45kg

48kg

48kg

Cooling

Nature

Fan

Fan

Fan

Dimension

707×492×240mm

Warranty

5 years


 

 

 

FAQ

  1. How fast will my system respond to a power outage?

Our solar inverters typically transfer to battery power in less than 16 milliseconds (less than 1/50th of a second).

  1. What kind of batteries do the systems include?

Our solar backup electric systems use special high-quality electric storage batteries.

  1. How do I install my system?

A solar backup inverter is connected to a home electric system , we will supply detailed installation manual and videos for our customers .


Q: What are the different types of solar inverters?
There are three main types of solar inverters: string inverters, microinverters, and power optimizers. String inverters are the most common and cost-effective option, where multiple solar panels are connected in a series and the inverter converts the DC power from the panels into AC power for use in the home. Microinverters are installed on each individual solar panel, converting DC power to AC power directly at the panel level. Power optimizers are installed with string inverters and optimize the output of each solar panel individually, ensuring maximum energy production.
Q: Can a solar inverter be used in conjunction with a smart home system?
Yes, a solar inverter can be used in conjunction with a smart home system. Many modern solar inverters are equipped with communication protocols such as Wi-Fi or Zigbee, allowing them to connect to a smart home system. This integration enables users to monitor and control their solar energy production, consumption, and storage conveniently through their smart home devices or applications.
Q: Can a solar inverter be used with different types of solar panels?
Yes, a solar inverter can be used with different types of solar panels as long as the voltage and current specifications of the panels are compatible with the inverter.
Q: How does a solar inverter convert DC power to AC power?
A solar inverter converts DC power to AC power by using a two-step process. Firstly, it takes the direct current (DC) electricity generated by the solar panels and converts it into alternating current (AC) electricity. This is done by using electronic components, such as transistors and capacitors, to mimic the characteristics of AC electricity. Secondly, the inverter adjusts the converted AC power to match the desired voltage and frequency of the electrical grid, ensuring compatibility with the appliances and devices that will use the electricity.
Q: What is the role of a solar inverter in voltage and frequency regulation during islanding conditions?
During islanding conditions, which occur when a distributed generation system (such as a solar PV system) continues to supply power to a local area even when the main electrical grid has been disconnected, the role of a solar inverter is crucial in maintaining voltage and frequency regulation. When a solar inverter operates in grid-connected mode, it synchronizes its output voltage and frequency with the utility grid. However, during islanding conditions, the solar inverter must transition into a standalone mode, where it becomes responsible for regulating voltage and frequency within the isolated microgrid. The primary function of a solar inverter in islanding conditions is to ensure that the voltage and frequency of the generated electricity remain within acceptable limits. It does this by constantly monitoring the electrical parameters and adjusting its own output accordingly. To regulate voltage, the solar inverter adjusts its output voltage based on the demand and the available power from the solar panels. It maintains a steady voltage level within a specified range, typically around 230-240 volts for residential applications. Frequency regulation is equally important, as it ensures that the electrical devices connected to the microgrid operate at their designed frequency, typically 50 or 60 Hz. The solar inverter continuously monitors the frequency and adjusts its output to match the required frequency, minimizing fluctuations and maintaining stability. In addition to voltage and frequency regulation, a solar inverter also provides other important functions during islanding conditions. These include power quality control, protection against overvoltage and overcurrent, and safe disconnection in case of emergencies or grid restoration. Overall, the role of a solar inverter in voltage and frequency regulation during islanding conditions is critical to maintain a stable and reliable power supply within the isolated microgrid. It ensures that the electricity generated by the solar PV system remains within acceptable parameters, allowing the connected electrical devices to operate efficiently and safely.
Q: What is the maximum power output of a residential solar inverter?
The maximum power output of a residential solar inverter can vary depending on the specific model and capacity. However, on average, residential solar inverters typically have a maximum power output ranging from 3 kilowatts (kW) to 10 kW.
Q: Can a solar inverter be connected to a home automation system?
Yes, a solar inverter can be connected to a home automation system. This integration allows homeowners to monitor and control their solar power generation and consumption remotely through their home automation system. It provides real-time data on energy production, allows for scheduling and optimizing energy usage, and enables the automation of various appliances and devices based on solar power availability.
Q: Can a solar inverter be used with building-integrated photovoltaics (BIPV)?
Yes, a solar inverter can be used with building-integrated photovoltaics (BIPV). BIPV systems are designed to seamlessly integrate solar panels into the building structure, providing both energy generation and architectural functionality. Solar inverters play a crucial role in BIPV systems by converting the direct current (DC) produced by the solar panels into alternating current (AC) that can be used to power electrical devices in the building or fed back into the grid.
Q: What is the role of galvanic isolation in a solar inverter?
The role of galvanic isolation in a solar inverter is to provide electrical safety and protect sensitive electronic components. It prevents the flow of direct current (DC) and alternating current (AC) between the solar panels, the inverter, and the connected electrical system. This isolation helps to eliminate the risk of electrical shocks, voltage surges, and ground faults, ensuring the safe and efficient operation of the solar inverter.
Q: Can a solar inverter be used with a wind turbine?
Yes, a solar inverter can be used with a wind turbine. Both solar panels and wind turbines generate DC (direct current) electricity, which needs to be converted to AC (alternating current) to be used in most household appliances and the electrical grid. A solar inverter is designed to convert DC electricity from solar panels into AC electricity, and it can also be used to convert the DC electricity generated by a wind turbine into AC electricity. However, it is important to note that wind turbines usually generate higher voltage and fluctuating currents compared to solar panels, so the inverter used with a wind turbine may need to be specifically designed to handle these variations. Additionally, wind turbines often have their own specialized inverters that are optimized for their unique electrical characteristics.

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

Hot products


Hot Searches

Related keywords