• 2000W Solar Inverter - 2024 Top Selling South Africa EP 3000 48V 6000W Solar Charger Inverter System 1
  • 2000W Solar Inverter - 2024 Top Selling South Africa EP 3000 48V 6000W Solar Charger Inverter System 2
  • 2000W Solar Inverter - 2024 Top Selling South Africa EP 3000 48V 6000W Solar Charger Inverter System 3
2000W Solar Inverter - 2024 Top Selling South Africa EP 3000 48V 6000W Solar Charger Inverter

2000W Solar Inverter - 2024 Top Selling South Africa EP 3000 48V 6000W Solar Charger Inverter

Ref Price:
get latest price
Loading Port:
Ningbo
Payment Terms:
TT OR LC
Min Order Qty:
500 pc
Supply Capability:
10000 pc/month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

 

2015 Top Selling South Africa EP 3000 48V 6000W Solar Charger Inverter    

Features of EP3000 Series 48V 6000W Solar Charger Inverter  : 

  • High efficiency over 90%

  • 12Vac/24Vac/48Vac

  • Max.charge current 70A

  • Inbuilt pure copper transformer

  • Automatic three-stage battery Charger

  • RS232 with free CD(option)

  • Solar first function(option)

  • Charge current adjustable(option)

  • Remote control(option)

  • CE certificate, Soncap certificate.

Product Picts of  EP3000 Series 48V 6000W Solar Charger Inverter :

 

 

 

 

  

 

Rated Capacity1000W 1500W 2000W 3000W
Efficiency>90%
Input
Model120v Models230v Models
Nominal Voltage100V/110V/115V/120V Selectable200V/220V/230V/240V Selectable
Output
Rated Power1000W1500W2000W3000W
Output Voltage100V/110V/115V/120V Selectable200V/220V/230V/240V Selectable
Voltage WaveformPure Sine Wave
Crest Factor3:1
Regulation(Nominal)±10% Typical Of Nominal Voltage
Transfer TimeTransfer Time : AC To DC : 10ms (Typical)
Transfer Time : DC To AC : 10ms(Typical )
Max Bypass Overload Current30A
Input
Nominal VoltageDC12V/24VDC12V/24VDC12V/24VDC24V/48V
Over Current ProtectionBy Re-Settable Over Current Protector
Output
Nominal Input Voltage230Vac
Input Voltage Range185~265Vac
Nominal Charge Current35amp-70amp
Charger Short
Circuit Protection
Circuit Breaker
Over Charge
Protection
Bat. V ≥ 15.7Vdc/31.4Vdc/62.8Vdc
Beeps 0.5s Every 1s & Fault After 60s
Battery TypeLead-Acid 12Ah ~ 250Ah
Typical Backup TimeNo Limit, Depend on external battery
Average Charging Current35A/20A45A/30A65A/35A75A/30A
Battery voltage Option
Options 7Battery low trip to bypass 11v , high trip to battery 14v
Options 8Battery low trip to bypass 10.5v , high trip to battery 13.5v
Options 9Battery low trip to bypass 10v , high trip to battery 13v
Communications & Management
Control PanelLCD/LED Option
Audible AlarmAlarm On Battery:Low Battery & Battery Over Voltage
Alarm On Abnormal Operation:
Over Load, Short-Circuit, & Over Heat
Environment and Safe
Operating Temperature0℃ To 40℃ (32℉ To 104℉)
Transit/Storage Temperature-15℃ To 60℃
Audible Noise60 Dba Max at 1m
Quality Control SystemISO 9001,CE,FCC
Physical
Dimensions: (H×D×W)570*320*315mm
G.W (Kg)191922.527.5
PackingExport Carton For Each Unit Per Carton

 

2015 Top Selling South Africa EP 3000 48V 6000W Solar Charger Inverter

2015 Top Selling South Africa EP 3000 48V 6000W Solar Charger Inverter

 

 

Warrenty

provides a 13 year limited warranty (“Warranty”) against defects in materials and workmanship for its Uninterruptible power supply, Power inverter/chargers, Solar charge controllers, Battery Products (“Product”).

The term of this Warranty begins on the Product(s) initial purchase date, or the date of receipt of the Product(s) by the end user, whichever is later. This must be indicated on the invoice, bill of sale, and/or warranty registration card submitted to MUST-Solar. This Warranty applies to the original MUST-Solar Product purchaser, and is transferable only if the Product remains installed in the original use location.

 

FAQ

      1.    How do I decide which system is right for me ?

For protection from long outages, include a generator or solar panels in your Must solar system. Shorter outages can be handled by a battery-only system.

2.    Where my system will be installed ?

Must solar systems are usually wall-mounted near a home's main electrical (circuit breaker) panel.

3.    How do I install my system ?

A must solar backup inverter is connected to a home electric system , we will supply detailed installation manual and videos for our customers .

4.    How fast will my system respond to a power outage ?

Must solar inverters typically transfer to battery power in less than 16 milliseconds (less than 1/50th of a second).

 

Q: Are there any limitations on the number of solar panels that can be connected to a single inverter?
Yes, there are limitations on the number of solar panels that can be connected to a single inverter. The maximum number of panels that can be connected depends on various factors such as the power rating of the inverter, the voltage and current ratings of the panels, and the configuration of the system. In general, the inverter should be able to handle the combined power output of all the connected solar panels. If the panels generate more power than the inverter can handle, it may lead to system inefficiencies, reduced performance, or even damage to the inverter. Additionally, the voltage and current ratings of the panels should be within the acceptable range of the inverter. If the panels have a higher voltage or current rating than what the inverter can safely handle, it may result in overloading or malfunctioning of the inverter. Furthermore, the configuration of the solar panels also plays a role in determining the limitations. Panels can be connected in series or parallel, and each configuration has its own requirements and limitations. The inverter needs to be compatible with the specific configuration being used. To ensure proper functioning and optimal performance, it is recommended to consult the manufacturer's guidelines and specifications for both the solar panels and the inverter. These guidelines will provide information on the maximum number of panels that can be connected to a single inverter and any other specific limitations or requirements that need to be considered.
Q: What is the role of a solar inverter in voltage support?
The role of a solar inverter in voltage support is to convert the direct current (DC) generated by solar panels into alternating current (AC) that is compatible with the electrical grid. Additionally, it helps regulate the voltage levels to ensure a steady and consistent supply of electricity to the grid, thereby supporting voltage stability.
Q: What is the maximum DC input current for a solar inverter?
The maximum DC input current for a solar inverter can vary depending on the specific model and manufacturer. It typically ranges from 10 to 60 amps, but it is best to consult the product specifications or contact the manufacturer for the exact maximum DC input current of a particular solar inverter.
Q: Can a solar inverter be used in systems with different module tilts?
Yes, a solar inverter can be used in systems with different module tilts. Solar inverters are designed to convert the DC power generated by solar panels into AC power for use in the electrical grid. They are compatible with a wide range of module tilts and orientations, allowing flexibility in system design and installation.
Q: What is the role of a solar inverter in a grid-tied system?
The role of a solar inverter in a grid-tied system is to convert the direct current (DC) electricity produced by the solar panels into alternating current (AC) electricity that can be used by the electrical grid or consumed by the appliances and devices in a home or business. It also ensures that the solar energy generated is synchronized with the grid's voltage and frequency to enable efficient and safe transfer of power. Additionally, the solar inverter monitors and controls the flow of electricity between the solar panels, the grid, and any energy storage systems that may be connected to the system.
Q: What is the role of a power control feature in a solar inverter?
The role of a power control feature in a solar inverter is to efficiently manage and optimize the power output generated by the solar panels. It helps regulate the flow of electricity, maintaining a stable voltage and frequency, while also ensuring that the maximum power point tracking (MPPT) is achieved. This feature allows for better performance, increased energy production, and the ability to adapt to changing sunlight conditions, ultimately maximizing the overall efficiency of the solar inverter system.
Q: Can a solar inverter be used in systems with different module types?
Yes, a solar inverter can be used in systems with different module types. Solar inverters are designed to convert the DC power generated by solar panels into usable AC power for homes or businesses. They typically have a wide input voltage range and are compatible with various module types, including monocrystalline, polycrystalline, and thin-film panels. However, it is essential to ensure that the inverter's specifications are compatible with the specific module types being used to optimize efficiency and performance.
Q: Can a solar inverter be used in a stand-alone solar system?
Yes, a solar inverter can be used in a stand-alone solar system. In fact, it is an essential component as it converts the direct current (DC) generated by the solar panels into alternating current (AC) that can be used to power electrical devices in a standalone system.
Q: What is the maximum efficiency rating of a solar inverter?
The maximum efficiency rating of a solar inverter can vary depending on the specific model and technology used, but generally, the highest efficiency ratings can range from 95% to 99%.
Q: Can a solar inverter be used in areas with high electromagnetic radiation?
Yes, a solar inverter can be used in areas with high electromagnetic radiation. However, it is important to note that the performance and reliability of the inverter may be affected by the presence of high electromagnetic radiation. High radiation levels can potentially cause electromagnetic interference (EMI) which may disrupt the functioning of the inverter and lead to reduced efficiency or even failure. Therefore, it is recommended to take necessary precautions such as proper grounding, shielding, and selecting inverters with robust EMI protection mechanisms when installing solar inverters in areas with high electromagnetic radiation. Additionally, it is advisable to consult with experts or manufacturers who can provide guidance on specific models of solar inverters that are designed to withstand and perform well in high electromagnetic radiation environments.

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

Hot products


Hot Searches

Related keywords