• Ebay Solar Inverter - Central Inverter with External Transformer, High Power Density Design for Smaller Size System 1
  • Ebay Solar Inverter - Central Inverter with External Transformer, High Power Density Design for Smaller Size System 2
  • Ebay Solar Inverter - Central Inverter with External Transformer, High Power Density Design for Smaller Size System 3
Ebay Solar Inverter - Central Inverter with External Transformer, High Power Density Design for Smaller Size

Ebay Solar Inverter - Central Inverter with External Transformer, High Power Density Design for Smaller Size

Ref Price:
get latest price
Loading Port:
China main port
Payment Terms:
TT or LC
Min Order Qty:
10 carton
Supply Capability:
20000 carton/month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

EA500KTS/M / EA630KTM/X    

 

The central inverter with external transformer adopts high power density design to be smaller size and optical fiber isolation technology to have strong anti-jamming capability, and also integrates DC distribution cabinet function to be more suitable for big power plant; and. It offers different output voltage options

   

● Low-voltage and zero-voltage ride through to cope with various grid conditions
● Nighttime SVG function, ready for power compensation full time
● Adjustable active power, power factor adjustment from 0.9 overexcited to 0.9 underexcited 
● Max. Efficiency at 98.7% (without transformer)
● Advanced MPPT algorithm
● Anti-islanding
● Wide DC input voltage, easy to make the combination of PV array
● CQC certificates (pass CQC33-461239-2013ma test), TÜV certificates, CE certificates

 

 

Specification / Type

EA500KTS

EA500KTM

EA630KTM

EA630KTX

Input (DC)

Max DC Voltage

1000Vdc

1000Vdc

1000Vdc

1000Vdc

Full-load MPPT Voltage Range

450~820Vdc

500~850Vdc

500~850Vdc

500~850Vdc

Max DC Power

550KWp

550KWp

630KWp

630KWp

Max DC Current

1200A

1100A

1260A

1200A

Number of DC Inputs

16

16

16

16

Output (AC)

Nominal AC Power

500KW

500KW

630KW

630KW

Nominal AC Voltage

270Vac

315Vac

315Vac

400Vac

AC Voltage Range

210~310Vac

245~362Vac

245~362Vac

312~460Vac

Nominal Frequency

50Hz/60Hz

Frequency Tolerance Range

47-51.5Hz/57-61.5Hz

Distortion (THD%)

<3%(at nominal power)

Power Factor (Cos phi)

0.9(leading)~0.9(lagging)

System Parameters

Max Efficiency

98.7%

Euro Efficiency

98.5%

Protection Degree

IP20 (indoor)

Night Consumption

<100W

Operation Temperature Range

-25℃~+55℃

Cooling

forced-air cooling

Relative Humidity

0-95%, no condensation

Max Working Altitude

2000m (derating above 3000m)


Display and Communication

Display

LCD

Standard Communication

RS485

Optional Communication

Ethernet /USB

Structure Parameters

Dimensions(W×D×H)

1800×800×2200mm

Weight

1500kg

 

·         Q. What is an UPS and What it is for ?

An uninterruptible power supply (UPS) is a device that allows your computer or telephone switch or critical equipement to keep running for at least a short time or longer time when the primary power source is lost. It also provides protection from power surges, spikes, brownouts, interference and other unwanted problems on the supported equipment.

·         Q. How long the UPS to run when power goes?

This can take 3 paths.
1.You can pick a UPS that is rated for pretty much the full VA you need so it will be running at 100% of capability and will thus last 'n' minutes.
2.You can pick a UPS that is rated at a much higher VA value than you really need so, for example, is running at 50% of capability and will thus last for longer than the UPS from option 1.
3You can use extra external battery packs to run for longer. If charging capability allows, the more and the bigger batteries you take with, the longer time UPS runs. 
or using a generator after about 6 hours, it will be more cost-effective, with a short runtime UPS to bridge the generator start-up gap.

 

 

Q: Are there any noise or sound considerations with a solar inverter?
Yes, there are noise considerations with a solar inverter. While solar inverters typically produce low levels of noise, it is important to ensure that the inverter is placed in a well-ventilated area to avoid any potential fan or cooling system noise. Additionally, some older models of inverters may produce a slight humming sound during operation, although newer models have significantly reduced this noise.
Q: What are the potential risks of overloading a solar inverter?
Overloading a solar inverter can lead to several potential risks. Firstly, it can cause the inverter to overheat, which can result in damage to the internal components and reduce its lifespan. Secondly, overloading can cause the inverter to shut down or trip, interrupting the solar power generation and potentially causing a power outage. Additionally, overloading the inverter may also compromise the safety of the electrical system, increasing the risk of electrical fires or other hazards. Therefore, it is important to ensure that the solar inverter is properly sized and not overloaded to avoid these potential risks.
Q: What is the role of a maximum power point tracker in a solar inverter?
The role of a maximum power point tracker (MPPT) in a solar inverter is to optimize the energy harvesting efficiency of the solar panels. It continuously monitors the output voltage and current of the panels and adjusts the operating point to ensure maximum power extraction from the panels. By tracking the maximum power point, the MPPT allows the solar inverter to generate the highest possible energy output from the available sunlight, thus maximizing the overall system performance.
Q: What are the advantages of using a three-phase solar inverter?
There are several advantages of using a three-phase solar inverter. Firstly, it allows for a more balanced distribution of power between the three phases, resulting in a more efficient use of electricity. This can lead to increased energy production and savings. Additionally, three-phase solar inverters provide a higher power output compared to single-phase inverters, making them suitable for larger installations. They also offer enhanced voltage stability and improved grid integration, ensuring a reliable and stable power supply. Overall, the use of a three-phase solar inverter can optimize energy generation, improve system performance, and provide greater flexibility for solar installations.
Q: Can a solar inverter be used in a ground-mounted solar system?
Yes, a solar inverter can be used in a ground-mounted solar system. A solar inverter is an essential component of a solar system that converts the direct current (DC) generated by the solar panels into alternating current (AC) electricity that can be used to power homes or be connected to the grid. Whether the solar system is ground-mounted or rooftop-mounted, a solar inverter is required to ensure the efficient and safe operation of the system.
Q: What is the typical size and weight of a solar inverter?
The typical size and weight of a solar inverter can vary depending on the capacity or power rating of the system. However, in general, residential solar inverters are compact and lightweight, with dimensions around 14-18 inches wide, 20-24 inches tall, and 6-8 inches deep. Their weight usually ranges between 25-50 pounds. Commercial or utility-scale solar inverters, on the other hand, can be much larger and heavier, often weighing hundreds or even thousands of pounds.
Q: What is the efficiency loss of a solar inverter over time?
The efficiency loss of a solar inverter over time is typically minimal, with modern inverters designed to maintain high conversion efficiency throughout their lifespan. However, some gradual degradation may occur due to factors such as aging components or environmental factors, resulting in a slight decrease in efficiency over the years. Regular maintenance and monitoring can help mitigate potential efficiency losses and ensure optimal performance.
Q: Can a solar inverter be used with a time-of-use electricity tariff?
Yes, a solar inverter can be used with a time-of-use electricity tariff. Time-of-use electricity tariffs typically involve different rates for electricity consumption based on the time of day. A solar inverter can be programmed to produce and export excess solar energy during peak times when electricity rates are higher, and import energy from the grid during off-peak times when rates are lower. This allows users to optimize their energy consumption and potentially save on electricity costs.
Q: What maintenance is required for a solar inverter?
Regular maintenance is required for a solar inverter to ensure its optimal performance. This includes cleaning the inverter and its components to remove any dust or debris, inspecting and tightening electrical connections, checking and replacing any faulty or worn-out parts, monitoring the inverter's performance and efficiency, and keeping track of any software updates or firmware upgrades provided by the manufacturer. It is also important to regularly clean and maintain the solar panels and other associated equipment to ensure the inverter's functionality.
Q: What are the key factors affecting the efficiency of a solar inverter?
The key factors affecting the efficiency of a solar inverter include the quality and design of the inverter itself, the type and quality of the solar panels used, the temperature at which the inverter operates, and the level of shading or obstruction on the solar panels. Additionally, the efficiency can also be influenced by the electrical load connected to the inverter and the overall system design and installation.

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

Hot products


Hot Searches

Related keywords