• S0.5% Carbon additive with VM 1.5% 0-3mm 90% System 1
  • S0.5% Carbon additive with VM 1.5% 0-3mm 90% System 2
S0.5% Carbon additive with VM 1.5% 0-3mm 90%

S0.5% Carbon additive with VM 1.5% 0-3mm 90%

Ref Price:
get latest price
Loading Port:
Tianjin
Payment Terms:
TT OR LC
Min Order Qty:
20.5
Supply Capability:
1005 m.t./month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Introduction:

Calcined anthracite can be called carbon additive, carbon raiser, recarburizer, injection coke, charging coke, gas calcined anthracite. We sincerely welcome clients to visit our factory.

Best quality Anthracite as raw materials through high temperature calcined at over 2000 by the DC electric calciner with results in eliminating the moisture and volatile matter from Anthracite efficiently, improving the density and the electric conductivity and strengthening the mechanical strength and anti-oxidation. It has good characteristics with low ash, low resistivity, low sulphur, high carbon and high density. It is the best material for high quality carbon products. It is used as carbon additive in steel industry or fuel.

 Features:

G-High Calcined Anthracite is produced when Anthracite is calcined under the temperature of 1240°C in vertical shaft furnaces. G-High Calcined Anthracite is mainly used in electric steel ovens, water filtering, rust removal in shipbuilding and production of carbon material.

Specifications:

PARAMETER   UNIT GUARANTEE VALUE

F.C.%

95MIN 

94MIN

93MIN

92MIN

90MIN

85MIN 

84MIN 

ASH %

4MAX

5MAX

6 MAX

6.5MAX

8.5MAX

12MAX

13MAX

V.M.%

1 MAX

1MAX

1.0MAX

1.5MAX 

1.5MAX

3 MAX

3 MAX

SULFUR %

0.3MAX

0.3MAX

0.3MAX

0.35MAX

0.35MAX

0.5MAX

0.5MAX

MOISTURE %

0.5MAX

0.5MAX

0.5MAX

0.5MAX

0.5MAX

1MAX

1MAX

 

 

Pictures

 

S0.5% Carbon additive with VM 1.5% 0-3mm 90%

S0.5% Carbon additive with VM 1.5% 0-3mm 90%

S0.5% Carbon additive with VM 1.5% 0-3mm 90%

S0.5% Carbon additive with VM 1.5% 0-3mm 90%

 

 

FAQ:

Packing:

(1). Waterproof jumbo bags: 800kgs~1100kgs/ bag according to different grain sizes;

(2). Waterproof PP woven bags / Paper bags: 5kg / 7.5kg / 12.5kg / 20kg / 25kg / 30kg / 50kg small bags;

(3). Small bags into jumbo bags: waterproof PP woven bags / paper bags in 800kg ~1100kg jumbo bags.

Payment terms
20% down payment and 80% against copy of B/L.

Workable LC at sight,

 

Q: Are carbon fibers organic polymer materials?
The fiber spacing is similar to artificial graphite and turbostratic carbon fiber.[5] levels between about 3.39 to 3.42A, the parallel plane between each carbon atom, as well as regular arrangement of graphite, and the layers are connected together by van Edward.Therefore, carbon fiber is an inorganic high polymer fiber with carbon content higher than 90%
Q: What is the role of carbon in the corrosion of metals?
Carbon can play a significant role in the corrosion of metals by acting as a catalyst or an electrolyte. It can accelerate the corrosion process by promoting the formation of corrosive substances such as carbonic acid or carbon dioxide. Additionally, carbon can act as an electrolyte in certain environments, facilitating the flow of electrons and ions between the metal and the surrounding medium, thus enhancing corrosion.
Q: Why is carbon content of stainless steel low?
The corrosion resistance of stainless steel decreases with the increase of carbon content. Therefore, the carbon content of most stainless steel is lower, the maximum is not more than 1.2%, and some steel's Omega C (carbon content) is even less than 0.03% (such as 00Cr12). The main alloying element in stainless steel is Cr (chromium), and the steel has corrosion resistance only when the Cr content reaches a certain value. Therefore, stainless steel in general Cr (chromium) content of at least 10.5%. Stainless steel also contains Ni, Ti, Mn, N, Nb, Mo, Si, Cu and other elements.
Q: What are the impacts of carbon emissions on glacier retreat?
The impacts of carbon emissions on glacier retreat are significant and alarming. As carbon dioxide and other greenhouse gases are released into the atmosphere, they trap heat and contribute to global warming. This rise in temperature directly affects glaciers by accelerating their melting and retreat. Glaciers act as natural reservoirs of freshwater, and their retreat has severe consequences for water availability, ecosystems, and human populations that depend on them. Additionally, the melting of glaciers contributes to rising sea levels, which poses a threat to coastal communities. Overall, carbon emissions play a major role in driving glacier retreat and exacerbating the impacts of climate change.
Q: What are the impacts of carbon emissions on the stability of deserts?
Deserts are significantly affected by carbon emissions, which have various consequences. One major consequence is the worsening of desertification, where fertile land transforms into desert. Carbon emissions contribute to global warming, resulting in higher temperatures and increased evaporation. This, in turn, reduces soil moisture and increases aridity in desert regions, intensifying desertification and causing deserts to expand. Furthermore, carbon emissions also impact precipitation patterns, directly affecting desert stability. Climate change leads to shifts in weather patterns, causing some areas to experience reduced rainfall and others to face more frequent and intense droughts. These precipitation changes further worsen desertification processes and increase desert instability. Another effect of carbon emissions on desert stability is the increased occurrence and intensity of dust storms. As global warming leads to drier conditions and less vegetation cover, the risk of dust storms rises. These storms transport large amounts of fine particulate matter, including dust and sand, over long distances, resulting in negative consequences. Dust storms damage infrastructure, harm human health, degrade air quality, and contribute to desertification by removing fertile topsoil. Moreover, the impacts of carbon emissions on deserts extend beyond ecological stability and have socio-economic implications. Many desert communities rely on agriculture and natural resources for their livelihoods. The destabilization of deserts due to carbon emissions can reduce agricultural productivity, increase food insecurity, and cause economic hardship for these communities. Additionally, people may be displaced from desert regions due to desertification, leading to increased migration and social instability. In conclusion, the stability of deserts is greatly affected by carbon emissions. They intensify desertification, alter precipitation patterns, increase the frequency and intensity of dust storms, and have socio-economic consequences. It is vital to address carbon emissions through climate change mitigation strategies to minimize these impacts and ensure the long-term stability of desert ecosystems and the communities dependent on them.
Q: Is the hardness or softness of the steel with higher carbon content?
The increase of carbon content also reduces the weldability and corrosion resistance of steel, and increases the cold brittleness and aging tendency of steel.
Q: How does carbon affect the melting of polar ice caps?
Carbon affects the melting of polar ice caps through its connection to climate change. Carbon dioxide, a greenhouse gas released primarily through human activities such as burning fossil fuels, traps heat in the Earth's atmosphere. This trapped heat leads to a rise in global temperatures, which in turn causes the polar ice caps to melt at an accelerated rate. When carbon dioxide is emitted into the atmosphere, it acts like a blanket, preventing the Earth's heat from escaping into space. As a result, the average temperature of the planet increases, causing glaciers and ice sheets in the polar regions to melt. The more carbon dioxide is released, the more heat is trapped, leading to a further increase in global temperatures and an acceleration of ice melting. The melting of polar ice caps has significant consequences. As the ice melts, it contributes to rising sea levels, posing a threat to coastal communities and ecosystems around the world. Additionally, the loss of polar ice reduces the Earth's ability to reflect sunlight, as ice has a high albedo (reflectivity). This means that as more ice melts and is replaced by darker ocean water or land, more sunlight is absorbed, further warming the planet and creating a positive feedback loop. Reducing carbon emissions and addressing climate change is crucial to mitigate the melting of polar ice caps. Transitioning to renewable energy sources, improving energy efficiency, and implementing sustainable practices are some of the ways we can limit carbon emissions and slow down the rate of ice melting. By taking action on carbon emissions, we can help preserve the polar ice caps and mitigate the devastating consequences of climate change.
Q: How does carbon affect the formation of toxic algal blooms?
Carbon can affect the formation of toxic algal blooms by providing an essential nutrient source for the growth and proliferation of algae. Increased carbon levels in water bodies, often caused by human activities such as excessive fertilizer use and wastewater discharge, can lead to an imbalance in the aquatic ecosystem. This imbalance promotes the rapid growth of algae, including toxic species, which can release harmful toxins into the water, posing risks to human and animal health as well as the overall ecological health of the water body.
Q: What does carbon cloth tonnage mean?
Carbon cloth tonnage is illegal: mean a square centimeter of sectional area of carbon cloth tension of tonnage. Meaning that the carbon cloth rolled into a solid "rod" if the cross-sectional area of the bar is 1 cm, the maximum tension tonnage it bear -- carbon cloth tonnage.
Q: Helmet material: ABS composites, FRP, carbon fiber, what are the differences? How to tell good from bad?
ABS resin is one of the five major synthetic resin, impact resistance, heat resistance, low temperature resistance, chemical resistance and excellent electrical properties, but also has the characteristics of easy processing, product size stability, good surface gloss, easy coloring, painting, but also the surface plating metal, electroplating, welding, hot pressing and bonding the two processing, widely used in the industrial field of mechanical and automotive electrical and electronic instruments, textiles and construction, is a very widely used thermoplastic engineering plastics.Materials (Composite) is a material consisting of two or more than two different materials which, in physical or chemical ways, macroscopically form new properties. Various materials in the performance complement each other, and produce synergistic effect, so that the comprehensive performance of composite material is better than the original material, and meet a variety of different requirements. The matrix materials of composite materials are divided into two major categories: metal and nonmetal. Metal matrix commonly used aluminum, magnesium, copper, titanium and its alloys. The non-metallic matrix mainly includes synthetic resin, rubber, ceramic, graphite, carbon and so on.

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

Hot products


Hot Searches