• Rich Solar Inverter - Single Phase Inverter Second Generation 4k Solar Inverter Made in China System 1
  • Rich Solar Inverter - Single Phase Inverter Second Generation 4k Solar Inverter Made in China System 2
  • Rich Solar Inverter - Single Phase Inverter Second Generation 4k Solar Inverter Made in China System 3
Rich Solar Inverter - Single Phase Inverter Second Generation 4k Solar Inverter Made in China

Rich Solar Inverter - Single Phase Inverter Second Generation 4k Solar Inverter Made in China

Ref Price:
get latest price
Loading Port:
Shanghai
Payment Terms:
TT OR LC
Min Order Qty:
0 watt
Supply Capability:
10000 watt/month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Description of Single Phase Inverter Second Generation 4k Solar Inverter

Solar ac power system consists of solar panels, charge controllers, inverter and battery; Solar energy does not include inverter dc power system. Inverter is a kind of power conversion device, inverter by incentives can be divided into self-excited oscillation inverter and separately excited oscillation inverter.

 

Features of Single Phase Inverter Second Generation 4k Solar Inverter

Standard 10 years warranty, 5-15 years optional

Built-in Gprs as option

Built-in Wifi as option

Smaller and lighter, only 9.6kg

High performance DSP for algorithm control

VDE-AR-N 4105 certification

New topology design

Dual MPPT design

Multi-button touch interface

LCD screen visible at night

Have anti-shading function

 

Advantages of Single Phase Inverter Second Generation 4k Solar Inverter

Longer life cycle

Plug and play

Free monitoring through our webportal

Very lower internal temperature

Easy transportation and installation

Faster CPU speed

Adjustable active and reactive power

Maximum conversion effciency up to 97.7%,Euro up to 96.9%

Real-time data readable at night

User friendly operation

 

 

Technical Data of Single Phase Inverter Second Generation 4k Solar Inverter

 

TypeOmniksol-4k-TL2
Input(DC)
Max.PV Power4500W
Max,DC Voltage590V
Nominal DC Voltage360V
Operating MPPT Voltage Range120-550V
MPPT Voltage Range at Nominal Power150-500V
Start up DC Voltage 150V
Turn off DC Voltage120V
Max, DC Current12A
Max, Short Cicuit Current for each MPPT16A
Number of MPP trackers2
Max.Input Power for each MPPT2600W
Number of DC Connection for each MPPTA:1/B:1
DC Connection TypeMC4 connector

 

Output(AC)
Max,AC Apparent Power4400VA
Nominal AC Power (cos phi = 1)4000W
Nominal Grid Voltage220V/230V/240V
Nominal Grid Frequency50Hz/60Hz
Max, AC Current19.0A
Grid Voltage Range**185-276V
Grid Frequency Range**45-55Hz/55-65Hz
Power Factor0.9 capacitive... 0.9 inductive
Total Harmonic Distortion(THD)<2%
Feed in Starting Power30W
Night time Power Consumption<1W
Standby Consumption6W
AC Connection TypePlug-in connertor

 

 

Efficiency
Max,Efficiency98.2%
Euro Efficiency97.5%
MPPT Efficiency99.9%

 

Safety and Protection
DC Insulation MonitoringYes
DC SwitchOptional
Residual Current Monitoring Unit (RCMU)Integrated
Grid Monitoring with Anti-islandingYes
Electricity Fuse ProtectionYes
Protection ClassⅠ(According to IEC 62103)
Overvoltage CategoryPVⅡ/Mains Ⅲ(According to IEC 62109-1)

 

Reference Standard
Safety StandardEN 62109, AS/NZS 3100
EMC StandardEN 6100-6-1, EN 6100-6-2, EN 6100-6-3 EN 6100-6-4, EN 6100-3-2, EN 6100-3-3
Grid StandardVDE-AR-N4105. VDE-0126-1-1,G83/1,EN 50438,RD1699,CEI 0-21, AS4777,C10/C11
Physical Structure
Dimensions352x421x162.5mm
Weight16.5kg
Environmental Protection RatingIP 65 (According to IEC 60529)
Cooling ConceptInternal fan convection
Mounting InformationWall bracket

 

General Data
Operating Temperature Range-25℃ to +60℃(derating above 45℃)
Relative Humidity0% to 98%, no condensation
Max. Altitude (above sea level)2000m
Noise Type<40dB
Isolation TypeTransformerless
Display3 LED ,Backlight, 4x20 Character LCD
Data CommunicationRS485(WiFi, GRPS integrated)
Computer CommunicationUSB
Standard Warranty10 Years (5-15 years optional)

 

IMages of Single Phase Inverter Second Generation 4k Solar Inverter

Single Phase Inverter Second Generation 4k Solar Inverter made in China

Single Phase Inverter Second Generation 4k Solar Inverter made in China

Single Phase Inverter Second Generation 4k Solar Inverter made in China

 

FAQ

Q: Do you have the CE, TUV, UL Certification?

A: We’ve already passed all the tests, and any certificate is available.

Q: Have you ever sold your products to companies in my country?

A: Of course, we have customers in all general PV markets, but I think we should expand our market share along with the market growth.

Q: When did your company set up?  You are a new company, how can I believe your quality?

A: We entered into Solar PV industry in 2005, now we have several plants in manufacturing of a-Si and c-Si panels, and our capacity is 220MW per year. Till now we have already passed all the tests by authorized laboratories, e.g. TUV, CE, UL.

 Q: Can you help us install the module if we cooperate with you?

A: We haven’t entered into installation sector, but we have the plan in near future.

Q: How do you pack your products?

A: We have rich experience on how to pack the panels to make sure the safety on shipment when it arrives at the destination.

Q: Can you do OEM for us?

A: Yes, we can.

Q: Can we visit your factory?

A: Surely, I will arrange the trip basing on your business schedule.

 

Q: Can a solar inverter be used with a solar-powered water pump?
Yes, a solar inverter can be used with a solar-powered water pump. The solar inverter is responsible for converting the direct current (DC) power generated by the solar panels into alternating current (AC) power that can be used to operate the water pump. This allows for a more efficient and reliable operation of the solar-powered water pump system.
Q: What are the potential risks of overvoltage in a solar inverter?
The potential risks of overvoltage in a solar inverter include damaging the inverter itself, reducing its lifespan, and potentially causing a fire or electrical hazard. Overvoltage can also lead to the failure of other connected components, such as solar panels or batteries, and may even result in a complete system shutdown. It is crucial to implement protective measures, such as surge protectors or voltage regulators, to mitigate the risks associated with overvoltage.
Q: How does a solar inverter handle frequency fluctuations in the grid?
A solar inverter handles frequency fluctuations in the grid by continuously monitoring the frequency of the grid and adjusting its own output accordingly. If the grid frequency increases, the inverter reduces its output to maintain stability. Conversely, if the grid frequency decreases, the inverter increases its output to help stabilize the grid. This way, the solar inverter actively contributes to maintaining a stable frequency in the grid.
Q: Can a solar inverter be used in areas with high seismic activity?
Yes, a solar inverter can be used in areas with high seismic activity. However, it is essential to ensure that the solar inverter is designed to withstand seismic vibrations and has been installed using appropriate seismic-resistant mounting techniques. Special precautions and engineering considerations may be necessary to ensure the inverter's integrity and functionality during seismic events.
Q: What is the maximum voltage input for a solar inverter?
The maximum voltage input for a solar inverter typically depends on the specific model and manufacturer, but it is generally around 600 to 1000 volts for residential and commercial inverters.
Q: How does the input voltage range affect the performance of a solar inverter?
The input voltage range directly affects the performance of a solar inverter. If the input voltage falls below the minimum range, the inverter may not be able to convert the DC power from the solar panels into usable AC power efficiently or at all. On the other hand, if the input voltage exceeds the maximum range, it can potentially damage the inverter. Therefore, it is crucial to ensure that the input voltage remains within the specified range for optimal performance and longevity of the solar inverter.
Q: What is the role of a voltage regulation feature in a solar inverter?
The role of a voltage regulation feature in a solar inverter is to ensure that the output voltage remains stable and within a specified range, regardless of fluctuations in the input voltage from the solar panels. This feature helps to protect the connected appliances and devices from damage due to overvoltage or undervoltage, and also optimizes the efficiency and performance of the solar inverter system.
Q: Can a solar inverter be used in a remote location without access to the grid?
Yes, a solar inverter can be used in a remote location without access to the grid. Solar inverters are designed to convert the direct current (DC) generated by solar panels into alternating current (AC) that can be used to power electrical devices. In off-grid systems, solar inverters are often combined with batteries to store excess energy generated during the day and provide power during the night or when sunlight is limited. This allows for the utilization of solar energy in remote locations where grid access is not available.
Q: What is the difference between a single-phase and three-phase solar inverter?
A single-phase solar inverter is designed to convert the direct current (DC) produced by a solar panel into alternating current (AC) for use in single-phase electrical systems. It is typically used in residential or small-scale solar installations. On the other hand, a three-phase solar inverter is capable of converting DC power into AC power for use in three-phase electrical systems, which are commonly found in commercial or industrial settings. The main difference lies in the number of phases supported and the scale of the electrical system they are designed for.
Q: What is the role of a solar inverter in a grid-independent system?
The role of a solar inverter in a grid-independent system is to convert the direct current (DC) generated by the solar panels into alternating current (AC) that can be used to power household appliances and other electrical loads. It also manages the flow of electricity between the solar panels, batteries (if present), and the electrical loads, ensuring optimal energy utilization and system efficiency. Additionally, a solar inverter in a grid-independent system may incorporate advanced features like battery charging and discharging control, voltage regulation, and monitoring capabilities to ensure the stability and reliability of the system.

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

Hot products


Hot Searches

Related keywords