• 72V Solar Inverter PV On-Grid String Inverter Blue-15kt / Blue-17kt / Blue-20kt / Blue-25kt System 1
  • 72V Solar Inverter PV On-Grid String Inverter Blue-15kt / Blue-17kt / Blue-20kt / Blue-25kt System 2
  • 72V Solar Inverter PV On-Grid String Inverter Blue-15kt / Blue-17kt / Blue-20kt / Blue-25kt System 3
  • 72V Solar Inverter PV On-Grid String Inverter Blue-15kt / Blue-17kt / Blue-20kt / Blue-25kt System 4
72V Solar Inverter PV On-Grid String Inverter Blue-15kt / Blue-17kt / Blue-20kt / Blue-25kt

72V Solar Inverter PV On-Grid String Inverter Blue-15kt / Blue-17kt / Blue-20kt / Blue-25kt

Ref Price:
get latest price
Loading Port:
China main port
Payment Terms:
TT OR LC
Min Order Qty:
50 pc
Supply Capability:
15000 pc/month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Specification

Output Power:
15000W/17000W/20000W/2500W
Inveter Efficiency:
98.2%-98.6%
Output Voltage(V):
400
Input Voltage(V):
620
Output Current(A):
23.9A/27.1A/31.9A/39.9A
Output Frequency:
50Hz / 60Hz±5Hz

Product Description:

Max. PV voltage up to 1100V Type II DC /AC SPD

Compatable for big capacity PV panel WiFi / 4G Plug optional

DC/AC ratio up to 2 IP66 protection

High efficiency up to 98.6% Smaller and lighter


Technical Specifications:

MODELBluE-15KTBluE-17KTBluE-20KTLBluE-25KTL
Input(DC)
Max. DC Voltage1100V1100V1100V1100V
Nominal Voltage620V620V620V620V
Start Voltage180V180V180V180V
MPPT Voltage Range140V-1000V140V-1000V140V-1000V140V-1000V
Number of MPP Tracker2222
Strings Per MPP Tracker2/1222
Max. Input Current Per MPPT30A/15A30A30A30A
Max. Short-circuit Current per MPPT40A/20A40A40A40A
Output(AC)
Nominal AC Output Power15000W17000W20000W25000W
Max. AC Output Power16500VA18700VA22000VA27500VA
Nominal AC Voltage400V 3L+N
AC Grid Frequency Range50Hz / 60Hz±5Hz
Max. Output Current (A)23.9A27.1A31.9A39.9A
Power Factor (cosφ )0.8 leading to 0.8 lagging
THDi<3%
Efficiency
Max. Efficiency98.60%98.60%98.60%98.60%
Euro Efficiency98.20%98.30%98.30%98.30%
Protection devices
DC SwitchYes
Anti-islanding ProtectionYes
Output Over CurrentYes
DC Reverse Polarity ProtectionYes
String Fault DetectionYes
AC/DC Surge ProtectionDC: Type II / AC: Type III / Type II Optional
Insulation DetectionYes
AC Short Circuit ProtectionYes
General Specifications
Dimensions W x H x D (mm)380*483*193
Weight(kg)25
Environment
Operating Temperature Range–25℃~+60℃
Cooling TypeFan Cooling
Max. Operation Altitude4000m
Max. Operation Humidity0-100%(No Condensation)
AC Output Terminal TypeQuick Connector
IP ClassIP66
TopologyTransformer-less
Communication InterfaceRS485/WIFI/4G
DisplayLCD
Certification & StandardEN/IEC62109-1/2IEC/EN61000-6-2;IEC/EN61000-6-4;IEC61683;IEC60068;IEC60529;IEC62116;IEC61727;EN50549-1;AS 4777.2;VDE-AR-N-4105;VDE 0126-1-1;CEI0-21;G98;G99;C10/C11;NB/T32004-2018GB/T19964-2012


FAQ:

Q:How the output voltage of the PV inverter and the grid-connected voltage are determined

Inverter is the DC power (battery, battery) into alternating current (usually 220V, 50Hz sine wave). It consists of inverter bridge, control logic and filter circuit. Widely used in air conditioning, home theater, electric wheel, power tools, sewing machines, DVD, VCD, computer, TV, washing machine, range hood, refrigerator, video recorders, massage, fan, lighting and so on. In foreign countries

Q:Installation and maintenance of photovoltaic grid - connected inverter

only when the local power sector permission by the professional and technical personnel to complete all the electrical connection before the inverter can be connected.

Q:What is the difference between a PV grid-connected inverter and an off-grid inverter?

Off-grid inverter is equivalent to their own to establish an independent small power grid, mainly to control their own voltage, is a voltage source.

Q:After the PV inverter, how to achieve the same period before the network?

Solar panel simulator: with MPPT function, simulated morning, noon, afternoon, evening, rainy weather, solar panels produced under different conditions in different voltages.

Q:Is the PV inverter a current source or a voltage source?

According to the waveform modulation method can be divided into square wave inverter, stepped wave inverter, sine wave inverter and modular three-phase inverter.

Q:Photovoltaic grid-connected inverter without DC emc how will happen

Solar photovoltaic power generation technology is the use of solar cells, the photovoltaic effect of semiconductor materials, solar radiation can be directly converted into a new type of power generation system, solar energy is a radiant energy, solar power means --- to direct conversion of sunlight Into electricity,

Q:What is the difference between low voltage grid connection and medium voltage grid connection?

For photovoltaic power plants when the power system accidents or disturbances caused by photovoltaic power plant grid voltage drop, in a certain voltage drop range and time interval, the photovoltaic power plant can ensure that non-off-line continuous operation.

Q:Is the grid side of the grid and the inverter?

The grid load side of the grid is the grid. The inverter is an important part of the PV grid-connected system and can not be regarded as an external load. Photovoltaic power generation system is included in both grid and off-grid.

Q:PV grid-connected inverter and independent inverter in the control of what is the difference

The independent inverter in the output voltage phase amplitude of the frequency control is initially set good. Independent inverter, you should refer to off-grid inverter, do not need to consider the grid situation.


Product Images:


Production Process Photos:




Q: Can a solar inverter be used in systems with different module capacities?
Yes, a solar inverter can be used in systems with different module capacities. Solar inverters are designed to convert the DC power generated by solar panels into AC power for use in the electrical grid or for consumption. They are typically compatible with a wide range of module capacities and can accommodate various configurations of solar panels. However, it is important to ensure that the solar inverter's specifications and capacity match the overall system requirements to ensure optimal performance and efficiency.
Q: What certifications should a solar inverter have?
A solar inverter should have certifications such as UL 1741, IEC 61727, IEC 62109, and IEEE 1547. These certifications ensure that the inverter meets safety, performance, and grid compatibility standards for reliable and efficient operation in solar power systems.
Q: What is the efficiency rating of a solar inverter?
The efficiency rating of a solar inverter refers to the percentage of solar energy converted into usable electricity. It measures how effectively the inverter converts the direct current (DC) power generated by solar panels into alternating current (AC) power for use in homes and businesses. Higher efficiency ratings indicate that the inverter can convert a greater amount of solar energy, resulting in increased electricity production and cost savings.
Q: What is the role of power ramp rate control in a solar inverter?
The role of power ramp rate control in a solar inverter is to ensure a smooth and controlled increase or decrease in power output from the solar panels. This control mechanism is important to prevent sudden changes in power generation that can lead to instability in the electrical grid. By gradually adjusting the power output, the solar inverter helps to maintain grid stability, avoid voltage and frequency fluctuations, and ensure a reliable and consistent energy supply.
Q: Can a solar inverter be used in systems with different module voltages?
Yes, a solar inverter can be used in systems with different module voltages by adjusting its settings or using additional components such as DC optimizers or power optimizers. These components help in matching the voltage of the solar modules to the input voltage range of the inverter, allowing for efficient power conversion.
Q: What is the role of a power control feature in a solar inverter?
The role of a power control feature in a solar inverter is to regulate the flow of electricity between the solar panels and the electrical grid. It ensures that the solar energy generated by the panels is efficiently converted and synchronized with the grid's voltage and frequency. Additionally, it helps maintain a stable and consistent power output, maximizes energy production, and protects the system from overloading or damage.
Q: How does a solar inverter protect against voltage fluctuations?
A solar inverter protects against voltage fluctuations by continuously monitoring the voltage levels from the solar panels. It then adjusts the output voltage to match the required voltage for the connected devices or the grid. This ensures a stable and consistent voltage supply, preventing any damage that could be caused by sudden voltage spikes or drops.
Q: Can a solar inverter be used in systems with different module types?
Yes, a solar inverter can be used in systems with different module types. Solar inverters are designed to convert the direct current (DC) generated by the solar panels into alternating current (AC) that can be used to power various household appliances and be fed into the electrical grid. They are typically compatible with a wide range of module types, including monocrystalline, polycrystalline, and thin-film solar panels. However, it is important to ensure that the inverter's specifications and capacity align with the specific module types being used to ensure optimal performance and efficiency.
Q: Can a solar inverter be used with a three-phase electrical system?
Yes, a solar inverter can be used with a three-phase electrical system. In fact, many solar inverters are designed to work with three-phase systems. These inverters are capable of converting the direct current (DC) generated by the solar panels into alternating current (AC) that can be used by the three-phase electrical system.
Q: What is the role of a cooling system in a solar inverter?
The role of a cooling system in a solar inverter is to regulate and maintain optimal operating temperatures to prevent overheating. This is crucial because excessive heat can degrade the performance and lifespan of the inverter, leading to reduced efficiency and potential failure. The cooling system helps dissipate heat generated by the inverter's components, ensuring smooth and efficient operation, and ultimately enhancing the overall reliability and longevity of the solar inverter.

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

Hot products


Hot Searches

Related keywords